DWDM Long-Haul Technology

Yuan-Hua (Claire) Kao and Jim Benson Optical Networking Group Lucent Technologies

Outline

- Introduction
- Technology Enablers
 - Enhanced Optical Transponders
 - Raman Amplification and Dynamic Power Equalization
 - Reconfigurable Optical Add Drop Multiplexer (ROADM)
- Example Next Gen DWDM Transport System

DWDM Long-Haul Network Configuration Evolution

Before:

- Point-to-point linear configuration w/ end terminals
- 600km between regeneration sites

Now:

- 3000-4000km between regeneration sites - reduces regeneration cost
- Ring/Mesh configuration w/ ROADMs - fast and simple service provisioning

Business Priorities and Implications on Network Evolution

Wavelength Services

Mobilitv

Broadband Access

SCALABILITY AND FLEXIBILITY

- Mix of traffic patterns and types (SONET/SDH, Ethernet)
- Strong traffic growth (voice, data, video, wireless)

LOW CAPEX/OPEX

- Ultra LH to reduce regen cost
- Modular design to save startup cost; in-service upgradeable in the future
- High density footprint and low power consumption
- Remote routing and provisioning

FAST SERVICE TURN-UP TO SPEED UP **REVENUE GENERATION**

- Plug and play. Automatic wavelength provisioning and power control.

RELIABILITY

- Diverse traffic routing in ring/mesh configuration
- Optical layer protection and ring/mesh restoration
- Automatic fault detection, isolation, alarms and rapid recovery

Technology Enablers for Next Gen Long-Haul DWDM Systems

Feature	Enable Technology
Ultra-Long Reach	10Gb/s RZ format
	Enhanced forward error correction
	Dynamic dispersion compensation
	Distributed Raman amplification
	Dynamic gain equalization (DGE)
Ultra-High Capacity	40Gb/s CSRZ, Duobinary or DPSK modulation formats
	40G tunable dispersion compensator
Reconfigurable Mesh Network	Reconfigurable OADM based on blocker or wavelength selective switch
	Tunable Laser
Mixed traffic types	ASIC technology provides mapping between various traffic types

Enhanced Optical Transponders

Maximum flexibility and reach are key

- Wide-band Tunability
 - Simplifies planning for capacity upgrades
 - Reduction in circuit pack codes leads to reduced sparing cost
 - Enables dynamic routing of traffic
- Enhanced Modulation Format to achieve longer reach without regeneration
 - 10G: RZ format enables 4000km transmission without regeneration
 - 40G: CSRZ, Duobinary, and DPSK enable 1000km to 2000km transmission without regeneration
- Dynamic Dispersion Compensation for flexible routing
 - 10G: electronic compensation
 - 40G: tunable optical dispersion compensator
- Enhanced Forward Error Correction (EFEC) provides additional system margin

Tunable Laser Technology

- Monolithically integrated Distributed Bragg Reflector (DBR) laser
 - Tuning is based on current induced index change in mirror and phase sections
 - Fast tuning speed ~ <10ms
- External cavity laser
 - Tuning is based on a spectral filter and a mirror
 - Fast tuning speed ~ 10 ms
- Arrayed DFB laser
 - Tuning is based on temperature
 - Slow tuning speed ~ s

Dynamic Dispersion Compensation

- Enable flexible routing for ring/mesh networks
- 10G: Electrical dispersion compensation
 - Decision Feedback Equalization (DFE), Feed Forward Equalization (FFE), Maximum Likelihood Sequence Estimation (MLSE) in RX
- 40G: Tunable optical dispersion compensator
 - Fiber Bragg Grating, waveguide based ring resonator, or bulk optics

Next Generation Amplification - Raman Amplifier

- Traditional DWDM networks use Erbium-Doped Fiber Amplifiers (EDFA).
- Advantages of Raman amplifier:
 - Distributed amplification using transmission fiber as amplification medium => lower noise figure compared to discrete amplifier
 - 5-7dB lower OSNR when compared to EDFA
 - Lower launch power compared to EDFA => minimize nonlinear penalty

=> Raman Amplifier provides more system margin and enables longer reach

Dynamic Channel Power Equalization

- For long reach, gain ripple accumulates dramatically that can lead to nonlinear penalty and power divergence at receiver. Therefore gain flatness is critical.
- Dynamic Gain Equalizers (DGEs) automatically correct power divergence in the system
- Common implementations are MEMs, Liquid Crystal, or Planar Lightwave Circuit

Reconfigurable Optical Add Drop Multiplexer (ROADM)

- Advantages of mesh network using ROADM
 - Eliminate O-E-O conversions for express traffic and ring interconnect (CAPEX reduction)
 - Remote configuration automatic wavelength setup and switching (OPEX reduction)
 - Dynamic bandwidth management
- ROADM technology
 - PLC, MEMS, and Liquid Crystal based wavelength selective switch or wavelength blockers
 - Integrated functionalities provide wavelength add/drop, wavelength routing, and channel power equalization

Degree 4 ROADM Architecture Based on Wavelength Selective Switch (WSS)

- WSS connects any wavelength or set of wavelengths to any port
- Provides re-configurable "colorless" Add/Drop, Thru, and Mesh connections
- Ultimate flexibility

Wavelength Selective Switch Technology

- Similar to DGE or blocker, but multiple output ports makes design much more challenging.
- Switch array provides both port selection and variable attenuation.
- Switch array typically implemented with MEMs or Liquid Crystals.

Example Next Gen DWDM Platform Lucent's LambdaXtremeTM Transport

LambdaXtreme[™] System Features:

- System reach and capacity: 128 ch of 10Gb/s up to 4000 km, 64 ch of 40Gb/s up to 2000 km
- Mixed 10G and 40G throughout network
- Fully flexible and remotely reconfigurable mesh ROADM
- In-Service Scalable Node Architecture
- Plug and play wavelength provisioning
- Automatic channel equalization
- Multi-rate transponders support 2.5G, 10G, 10GbE, 40G services

Basic Building Blocks

	Node Type	Function
	ILA	In-line amplifier that allows to extend the reach of LambdaXtreme Transport to up to 4,000 km.
	ISUG ILA	Deploy initially as an in-line amplifier, and convert to a Mini- ROADM when service add/drop is required.
	Degree 1 ROADM	Start as an End Terminal with flexibility to upgrade to a Degree 2 (D2), D3 or D4 ROADM.
	Degree 2 ROADM	Enable service add/drop for up to 64 channels. Can be upgraded to D3 or D4.
Ţ	Degree 3 ROADM	Allow for multi-segment cross-connection of signals. Can be upgraded to D4.
	Degree 4 ROADM	Maximum flexibility for wavelength add/drop and cross-connection between two rings.

Example Link Layout Using LambdaXtreme Building Blocks

- ROADM provides 10Gb/s and 40Gb/s channel add/drop capability.
- Traffic can be remotely configured with software control.
- OEO regeneration is minimized for through and cross-connected channels.

Scalable Node Architecture

LambdaXtreme Transport provides scalable nodes that allow flexibility for future growth – pay as you grow

Example 1:

When node B is first deployed, the degree1 ROADM works like an end terminal.

When services are required beyond Node B, it can be scaled in-service to a D2 ROADM that allows for service extension without regeneration.

When connections are required beyond a D2 ROADM, it can be scaled in-service to a D3 or D4 ROADM.

Example 2:

When node Y is first deployed, the ISUG-ILA works like a simple in-line amplifier.

When node Y requires add/drop services, the ISUG-ILA is upgradeable to a ROADM.

2004 LambdaXtreme[™] Network Deployment with RBOC

- 235 Nodes including 14 Degree-1 ROADMs, 25 Degree-2 ROADMs
- 9 Optical Line Systems (OLS)
- 13,100 Route miles, spanning 29 states
- 3,950 Circuit Packs
- 6,000 Fiber Connections
- Longest-reach single service channel: 3200Km
- Largest single OLS: Southwest
 - 85 nodes, spanning nearly 8000 Km in a single optical Ring