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Background



“Link Level” versus “System Level”

« Traditional layered approach in designing communication systems

— Isolated Optimization within layers without cross optimization.

— Results in sub-optimal design, especially in wireless system where the physical
channel is time varying.

 Link Level Design for Wireless Channels:

— Focus on physical layer design to optimize the link capacity at given bandwidth
and power budget.

— Multiple transmit and receive antenna used to increase the capacity of the
wireless link (at a given power and bandwidth budget) by forming “spatial
channels”.

« System Level Design for Wireless Channels:

— System level refers to the situation when we have multiple users.

— Since data source is usually very bursty, packet scheduling is a very important
component in the higher layer to achieve statistical multiplexing.

— Achieving link level optimization does not always achieve system level
optimization. - Joint design is important to exploit the time varying physical
channel in wireless system.



Contributions of the Research Work

Q1) What is the optimal scheduling performance for multi-user MIMO?

Ans 1) Based on the proposed analytical framework, optimal space time
scheduling performance is obtained as a performance reference.

Q2) How good is the widely used “greedy-based” space-time
scheduling algorithms in 3G1x, EV-DO, EV-DV, HSDPA?

Ans 2) The “greedy-based” algorithms are widely used in existing systems
and they achieve optimal performance for nT=1. Yet, there is a
significant performance gap for nT>1.

Q3) Any better scheduling heuristics that could achieve better
complexity — performance tradeoff?

Ans 3) Propose a low complexity genetic scheduling algorithm.



PART A:
Multi-User MIMO scheduling
— Downlink, Single Cell:



System Model - Downlink
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Design Constraints

— Linear Processing Constraint at Base Station

» Orthogonal Transmit Beam-Forming
— Complexity Constraint at Mobiles

« Single-Antenna mobile + Simple single-user processing capability
— Transmit Power Constraint

» Total Transmitted power at base station at most Hx



System Model
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System MOCe! g e - ——

 Channel Model: Fading slot 1 Fading slot 2 Fading slot N

Short burst duration + pedestrian mobility

Quasi-static fading - channel fading remains approximately constant
within an encoding frame.

TDD -> downlink channel matrices could be estimated at the uplink side
without explicit feedback.

e Source Model:

To decouple the problems, we assume saturated analysis

Infinite buffer size at base station - Every mobile always has packets to
transmit at every fading slot.

Performance of system is based on throughput and is therefore
independent of source model.

 Physical Layer Model:

Based on information theoretical capacities to decouple the performance
from specific implementations of channel coding and modulation.

Standard random codebook & Gaussian constellation = arbitrarily low
error probability for data rate less than Shannon’s capacity.

These assumption could be approximated for turbo-coded systems.



System Model

 Received signal at the k-th mobile (in a fading slot):

Y, =h,X+Z =, pbhw U, +D Jp,hw U, +
‘ ‘ ‘ {%z%;ai:%k T4 42 lzl- 4 3 ChanilkNoise

Multi-beam Interference

« Admissible User Set: A={k€[LK]:pk>O}

— Set of users selected for transmission in the current fading slot

ww =1 Vk=1.,K

hw, =0 VmeA m=K

« Beam-Forming Weight Selection: R
— Eliminate multi-beam interference: {

o Cardinality of Admissible User Set
— Due to limited degree of freedom with n. transmitted antennas, the maximum
cardinality of Admissible set is: ‘A‘ <n. .

— In other words, at most ' simultaneous transmission is allowed at any fading
slot.



System Model
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System Performance = System Utility

« System Performance — General Convex Utility Function

U(R,...R)=E[G(,ty) ] R =E(r,)

r, = instantaneous throughput of user-k

— Expectation is taken over various fading slots.

— Scheduling Algorithm - optimize a given system utility function.
K
* (A) Maximal Throughput U, (R,....R)= E{Zrk}
k=1

« (B) Proportional Fair UPF(RP---’RK):;'OQ(RO

— Lemma 1: A scheduler that maximizes G (R,...R.) would also

maximizes Upe (R, R¢) where K
Ximiz W é@F(RP"”RK):{Zr_k}

k=1

— We further approximate R, with moving window average

R =(1- ¥ IR+ Y r(t+)



Scheduling Problem

* Over a large number of fading slots, choose the admissible sets
{A} & power allocation policy P :{( Pys Pyose-es P )} so that the
system utility function is maximized.

g {U(R,..R)}= max [E,[G(r,...n)]}
{AL{(PLepi)} {AL{(pLePi )}

—E,| mgax {G(r,...n )|

A,( Py Px)




Analytical Formulation — per fading slot

1 keA

- : Vo AN/ =
Deflneablnaryvector( 1 K) where & {0 Ke A

The scheduling problem is given by:

Given a channel matrix realization for all K users, {hl,----,hK} , find
the optimal binary vector (al,...,aK) such that the system utility
function G(rl,----,rK) IS maximized with the constraint

K K
a. 0. <P. (Power C - a. < (Degree_ of freedom
kZ:; « P = H, (Power Constraint) ; k S Np Constraint)

and the achievable throughput of user k is given by:

2
@, Py ‘hkwk‘
2

o,

. =log,| 1+

The optimizing variables = power allocation (continuous) (p1 IOK)
admissible set (discrete) (a,,....,a )

&



Optimal Solution — Mixed Integer
Programming

o Step | (Convex Optimization on power allocation)

— Given a specific admissible set A, the optimal power allocation is given by:

* 1 1) . 1 1)
p. (maxthp) =| =— p (PF)=( - ]
k [ﬂ hkwﬁj 0 RA o]

A = Lagrandge Multiplier chosen to satisfy > a, p, (1)< B,
k

o Step Il (Discrete Optimization on admissible set) )

— Combinatorial search over all possible admissible set satisfying Zak s N
k=1
— Search Space is huge:

(o



Heuristic Scheduling Algorithms — (A) Greedy-
Based Baseline

» Greedy-based Scheduling Algorithm — Baseline

— Step I: Fork =1: K,
« Initialize a(k):(O, 0,..,

k-th element k-th dement

« Calculate G; =G(0,...,O, I‘k,O,...O)Where I is based on a(k),p(k)

— Step Il: Sort in descending order of {Gﬁ} calculated in step I.

— Step llI:

« The admissible set is given by the first I user indices from the
sorted list in Step 1.

 The power allocation is given by equations in previous page.

o Computational complexity ~ linear in K
« Achieve optimal performance for Ny =1

* Widely used in existing systems such as 3G1x, EV-DO, UMTS-
HSDPA

1 ,O,...Oj p(k)z[o,....,o, B 0



Heuristic Scheduling Algorithm —
Genetic Based

* Genetic-Based Scheduling Algorithm

— Define a chromosome to be the binary vector @ =(a,....,a )2, €{0,1}
— Step I: Initialization )

- Initialize a population of N, chromosomes satisfying the constraint ;ak <hg
— Step Il: Selection

« Construct an intermediate population based on current population & a

selection rule.

» For each randomly selected (i-th) chromosome from the current
population, evaluate it’'s fitness:

G;,ié G, = X {G(rl,...,rK ‘u(i))}, GZZG;J

(PLensP)
» The integral portion determines how many copies of the i-th
chromosome are placed into the intermediate population.

» The fractional portion determines the probability that an additional copy
is placed.

» The selection process carries on until all Np slots have been filled up
in the intermediate population.



Heuristic Scheduling Algorithm — (B)
Genetic Based Scheduling.

— Step lll: Breeding

Randomly select a pair of chromosomes in the intermediate population & combines
the 2 parents into 2 off-springs according to a cross-over and a mutation rules.

There is a probability of P to perform cross-over.

Parent 1 Oitapring 1

Clagm (] .

1 Ciebiriesd H ""--.

g
Farsnt 3 -‘- ’ "'K {Hspring 2

For every bit in the cross-over outputs, there is a P, probability of performing
mutation (bit toggling).
Dynamically adapts the mutation probabi:llity with the spread of the fitness.

" i 5,7

",

— Step IV: Termination

For processed chromosomes violating the constraint, ‘0O’ is randomly inserted into the
chromosome until the constraint is satisfied. The intermediate population becomes the
current population and step |-l are repeated for Ng times.
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Numerical Results — Maximal Throughput Scheduler

System Throughput vs SNR (nT =1)
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System Throughput vs SNR (nT = 4)
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Greedy-based baseline algorithm achieved optimal performance at single antenna

Performance gap between the greedy-based baseline scheduler and optimal
scheduler is quite large for multiple antennas.

Comparison w.r.t. random scheduler - multi-user diversity gain of scheduling.

Genetic algorithm could fill in the performance gap.

10



Numerical Results — Maximal
Throughput Scheduler

o Complexity comparison

— At 20 users and 4 transmit antennas, genetic algorithm is ~ 36
times less complex than optimal algorithm. Yet, genetic algorithm
Is ~ 5 times more complex than the greedy-based baseline
algorithm. - a reasonable performance — complexity tradeoff.

(K,ny) | Greedy Algonthm | Genetic Algorithm | Optimal Algornithm
(10.2) 10 + sorting 10x2=20 55
(10.4) 10 + sorting 10x5=50 385
(20.2) 20 + sorting 10x5=50 210
(20.4) 20 + sorting 20x5=100 3645
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Numerical Results — Maximal Throughput Scheduler
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— Increasing nT enhances system throughput at high SNR - due to multi-
beam transmission (spatial multiplexing)

— Capacity gain at small SNR is insignificant ~ limited by power splitting.

« At moderate K~10, the multi-user diversity gain is already significant.



Numerical Results — PF Scheduler

K=50, nT=2.

Genetic algorithm -
Over 90% of users
could achieve a
throughput of 0.2

Greedy-based
baseline algorithm
- Over 90% of
users could achieve
a throughput of 0.1.

Random scheduler
- Over 90% of
users could achieve
a throughput ~ 0.02.

Frab ot rate = abssica

User throughput c.d.f.
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Conclusion

* Analytical framework is proposed (based on information theory)
to model the multi-user space-time scheduling problem (single
cell) & obtain optimal scheduling performance as reference.

« Commonly employed greedy-based baseline algorithm -
optimal only in single antenna, large performance gap at
multiple antennas.

* Proposed a genetic based algorithm - reasonable complexity,
performance tradeoff for multiple antenna scheduling.

* On-going works - robust scheduling w.r.t. channel estimation
errors.
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