A Flexible Uplink CDMA Space-Time Transceiver with Reduced Complexity V-BLAST Detection

Chung-Lien Ho and Ta-Sung Lee

Department of Communication Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C. E-mail: margee.cm87g@nctu.edu.tw ; tslee@mail.nctu.edu.tw

Overview

Multi-input multi-output (MIMO) concept

- Basic idea: use multiple antennas at both sides to improve BER and/or data rate of a communication system
- Core scheme: space-time coding (STC)
 - Goal: exploits spatial-temporal signature of channel
 - Provisioning: diversity & multiplexing
- Scenario: most likely a mixture of diversity & multiplexing
- Applications: 3GPP, 3GPP2, IEEE 802.11n, IEEE 802.16a

Space-time coding schemes

- Transmit diversity perspective
 - ST block code (STBC)
 - Provides diversity gain but no coding gain
 - Simple detection at receiver
 - ST trellis code (STTC)
 - Provides both diversity and coding gains
 - Complicated detection at receiver
- Spatial multiplexing perspective
 - Layered ST code (LSTC), aka BLAST
 - Provides some coding gain and diversity gain
 - Provides multiplexing gain for increased bandwidth efficiency

System Model

Uplink MIMO-CDMA system over fading channel

- System description and basic assumption
 - N antennas at each of Q MSs, and M antennas at BS
 - Data stream of MS $s_q(k)$, $1 \le q \le Q$, can be
 - Space-time encoded: O-STBC ("orthogonal" STBC)
 - Spatially multiplexed: V-BLAST ("vertical" BLAST)

- Assumptions:
 - $M \ge N$ (so that V-BLAST users can be detected)
 - ▶ Q_D O-STBC users and Q_M V-BLAST users
- O-STBC mode: P_D symbols encoded over K symbol periods
- V-BLAST mode: $P_M = NK$ symbols transmitted over K symbol periods

Code matrix

$$\begin{split} P_{D} &= 2, \ K = 2 \\ s_{q}(k) &= \left\{s_{1}(k), s_{2}(k)\right\}_{\text{O-STBC}} & \text{O-STBC} \\ & \left[\begin{array}{c} x_{1}(k) & x_{1}(k+1) \\ x_{2}(k) & x_{2}(k+1) \end{array}\right] & \swarrow \\ s_{q}(k) &= \left\{s_{1}(k), s_{2}(k), s_{3}(k), s_{4}(k)\right\}_{\text{V-BLAST}} & \text{V-BLAST} \\ P_{M} &= 4, \ K = 2 \\ \end{split} \qquad \begin{array}{c} P_{D} &= 2, \ K = 2 \\ \text{O-STBC} \\ & \mathbf{X}_{q}(k) &= \begin{bmatrix} s_{1} & -s_{2}^{*} \\ s_{2} & s_{1}^{*} \end{bmatrix}_{\text{O-STBC}} \\ \mathbf{X}_{q}(k) &= \begin{bmatrix} s_{1} & s_{3} \\ s_{2} & s_{4} \end{bmatrix}_{\text{V-BLAST}} \\ \end{array}$$

At Rx, chip-sampled ST data matrix over K symbol periods

$$\mathbf{Y}(k) \coloneqq \left[\mathbf{y}(k)\cdots\mathbf{y}(k+K-1)\right] = \sum_{q=1}^{Q} \mathbf{H}_{q}\mathbf{X}_{q}(k) + \mathbf{V}(k)$$
$$\underbrace{M(G+L-1) \times K}{K}$$

where

- $\mathbf{y}(k) \in \mathbb{C}^{M(G+L-1) \times 1}$: chip-sampled data vector collected at M antennas
- *G*: spreading factor ; *L*: no. of resolvable paths
- $\mathbf{X}_{q}(k) \in \mathbb{C}^{N \times K}$: code matrix
- $\mathbf{H}_q \in \mathbb{C}^{M(G+L-1) \times N}$: MIMO channel matrix that includes effect of spreading code
- $\mathbf{V}(k) \in \mathbb{C}^{M(G+L-1) \times K}$: channel noise matrix

Equivalent vectorized data model (real-valued)[†]

$$\mathbf{y}_{c}(k) \coloneqq \begin{bmatrix} \tilde{\mathbf{y}}(k) \\ \vdots \\ \tilde{\mathbf{y}}(k+K-1) \end{bmatrix} = \mathbf{H}_{c}\mathbf{s}_{c}(k) + \mathbf{v}_{c}(k)$$

 $2K\!M\!(G+L-1)\,\times\,1$

where

•
$$\tilde{\mathbf{y}}(k) \coloneqq [\operatorname{Re}\{\mathbf{y}^{T}(k)\} \ \operatorname{Im}\{\mathbf{y}^{T}(k)\}]^{T} \in \mathbb{R}^{2M(G+L-1)}$$

• $\mathbf{H}_{c} \in \mathbb{R}^{2KM(G+L-1) \times 2P}$: equivalent MIMO channel matrix

• $\mathbf{s}_c(k) \in \mathbb{R}^{2P}$: total transmitted symbol vector from all MSs,

$$\blacktriangleright P = Q_D P_D + Q_M N K$$

A Flexible Detection Strategy

- Separation of multiple CDMA users
 - Dictates multi-user detection
 - V-BLAST detector is a candidate
- Detection of O-STBC user data streams
 - Simple decoder is available
- Detection of V-BLAST user data streams
 - Straightforward to use V-BLAST detector
- V-BLAST detector is therefore applied to
 - Separate data streams from different O-STBC users
 - Separate data streams from different antennas of each V-BLAST user

Sufficient statistics for symbol decision (matched filter output)

$$\mathbf{z}(k) \coloneqq \mathbf{H}_c^T \mathbf{y}_c(k) = \mathbf{F} \mathbf{s}_c(k) + \overline{\mathbf{v}}(k)$$

 $2P \times 1$

where

$$\mathbf{F} \coloneqq \mathbf{H}_{c}^{T} \mathbf{H}_{c} = \begin{bmatrix} \mathbf{F}_{11} & \cdots & \mathbf{F}_{1Q} \\ \vdots & \ddots & \vdots \\ \mathbf{F}_{Q1} & \cdots & \mathbf{F}_{QQ} \end{bmatrix} \in \mathbb{R}^{2P \times 2P}$$
$$\mathbf{F}_{pq} : \text{cross-coupling matrix} \text{between } p\text{th \& } q\text{th users}$$

- F is diagonal for single O-STBC user, but quite involved for general case ⇒ use V-BLAST to restore s_c(k)
- Distinctive structure of F induces block detection advantage

- V-BLAST detection
 - Algorithm:
 - Ordering
 - Nulling
 - Decision and reconstruction
 - Canceling
 - Ordering & nulling require \mathbf{F}^{-1}
 - Ordering is determined by diagonal entries of \mathbf{F}^{-1}
- Block based V-BLAST detection
 - Distinctive structure of **F** leads to block detection
 - ► Equal diagonal entries of **F**⁻¹ for each O-STBC user
 - A block of symbols can be jointly detected (same order)
 - Fewer iterations involved

• **Case 1:** Pure O-STBC scenario

Structure of F

- Diagonal blocks: diagonal with equal diagonal entries
- Off-diagonal blocks: orthogonal

 \bullet \mathbf{F}^{-1} assumes exactly the same structure as \mathbf{F}

- Block based: checks only Q levels and thus performs Q iterations
- Symbol based: checks 2QP_D levels and thus performs 2QP_D iterations

• **Case 2:** Mixed O-STBC & V-BLAST scenario

- Treat a V-BLAST user as NO-STBC users
- Totally $Q_M N + Q_D$ equivalent O-STBC users

Structure of F

- Diagonal blocks: diagonal with equal diagonal entries
- Off-diagonal blocks: orthogonal

 $lacksim \mathbf{F}^{-1}$ assumes exactly the same structure as \mathbf{F}

- Block based: checks only $Q_M N + Q_D$ levels and thus performs $Q_M N + Q_D$ iterations
- Symbol based: checks $2(Q_M NK + Q_D P_D)$ levels and thus performs $2(Q_M NK + Q_D P_D)$ iterations

Simulation Results

- BER performance vs. SNR
 - Perfect channel knowledge at RX; QPSK modulation
 - 4 O-STBCs (N = M = 2, K = 2, G = 8, L = 2)

BER performance vs. SNR

- Perfect channel knowledge at RX; QPSK modulation
- 2 V-BLASTs & 2 O-STBCs (N = M = 2, K = 2, G = 8, L

Conclusion

- Flexible MIMO transceiver is proposed
 - Each user's data can be ST block coded or spatial multiplexed
 - User-wise (block based) detection can be adopted at RX
- Block based detection
 - Exploits rich structures embedded in channel matrix
 - Endowed by orthogonal ST block encoders at TX
 - Compared with symbol based transceiver
 - Reduces computational complexity and decision delay
 - Achieves nearly the same performance
- Applications: B3G high speed uplink communications
- Ongoing work: efficient calculation of \mathbf{F}^{-1}