Advanced Design and Fabrication Techniques of Fiber Grating Devices

Yinchieh Lai (賴暎杰) Institute of Electro-Optical Engineering National Chiao Tung University Hsinchu, Taiwan, R.O.C.

[Outline]

- 1. Introduction
- 2. Overlap-Step-Scan Exposure Fabrication of Fiber Bragg Gratings
- 3. True Apodization Achieved by the Polarization Control of UV Beam
- 4. Evolutionary Programming Design of Optimal Fiber Gratings
- 5. Conclusions

What are Fiber Gratings ?

Fiber grating: index grating (induced by UV) on the fiber core.

Reflection Filter

Transmission Filter

Standard Fiber Gratings and Applications

Advantages of FBG OADM

	Fiber Bragg Gratings	Array Waveguides	Interference Filters
Channel Spacing	12.5, 25, 50, 100, 200GHz	50, 100, 200GHz	50, 100, 200GHz
Adjacent Channel Isolation	High, >30dB at 2.5GHz spacing	Medium, >24dB at 100GHz	Medium, >20-25dB at 100GHz
Express Insertion Loss	Low, <1dB/ch, Low after multiple dropped channels	High, <5 to 7dB	Low, <1dB/ch, High after multiple dropped channels
Power Consumption	Passive	Active	Passive
Add/Drop Insertion Loss	Low, <1dB per channel	High, <5 to 7dB	Low, <2dB per channel
Channel Count Scalability	Low to Medium	High	Medium
Channel Flexibility	High	Low	High
Bandwidth Efficiency Potential (bps/Hz)	~0.8	~0.5	~0.2

Data source: Southampton Photonics

Dispersionless FBG

Fiber Bragg Grating (FBG) as 1-D photonic crystal

Double exposure method for achieving true apodization

Step-Scan Exposure System

Lab Picture with Visitors from Duke University

Overlap-Step-Scan Exposure

Typical parameters: Grating period = 535 nm, UV Gaussion beam diameter = 1 - 5 mm Scan step size = beam diameter/10, grating length = 2 - 10 cm

Not True Apodization!

New method for true apodization and phase-shift

Another new method for true apodization

Fabricated Dispersionless FBG

An interferometric side-diffraction monitoring technique for UV writing of advanced Bragg gratings

Final Fabrication Goal

Final Design Goal: Optimal Inverse Design

Coupled Mode Equation Analysis

Design Methodology of Advanced Fiber Gratings

- 1. Inverse Methods
 - (1) GLM inverse scattering method
 - (E. Peral, et al., IEEE JQE, 32, 2078, 1996.)
 - (2) Layer-Peeling method
 - (R. Feced, ei al., IEEE JQE 35, 1105, 1999.)
- 2. Optimization Methods
 - (1) Genetic algorithm
 - (J. Skaar and K. M. Risvik, J. Lightwave Tech. 16, 1928, 1998.)
 - (2) Evolutionary Programming

(C.-L. Lee and Y. Lai, IEEE Photon. Tech. Lett, November, 2002.) (C.-L. Lee and Y. Lai, CLEO 2003, USA; also to be published on OC

Layer Peeling Method

Dispersionless FBG by the LP Method

The Least Square Fitting Method

To determine the experimental exposure parameters.

Dispersion Compensation Fiber Bragg Grating by Single Period Overlap-Step-Scan Exposure

Reflection Spectrum

Phase-shifted approximation

Phase error tolerance

PTL 2003.

Advantages and Disadvantages of Layer Peeling Method

- Advantages:

 Very fast.
 Single solution.

 Disadvantages:
 - (1) Complete spectra information (amplitude and phase) must be provided.
 - (2) Reconstruction sometimes fails.
 - (3) Can not impose additional constrains.
 - (4) Not necessary optimal solution for applications.

Synthesis of advanced FGs using EP (Flow chart of the algorithm)

Design of Dispersionless Fiber Bragg Grating

Convergence of the Stochastic Search

Comparison of the Computation Time

Matlab Programming

Designed Methods for the designed example	CPU time
EP (4cm) with 20 sections,	1~4 hrs
LP (4cm) with N=800, M=1600	12 sec
LP (20cm) with N=4000, M=8000	3min 20sec

Obviously the EP Optimization approach should compete with the LP method on the designed flexibility and achieved performance, not on computation time.

Design of Gain Flattening Long Period Grating

Coupling of Modes

Co-directional coupling:

Long Period Grating

Coupling between the core and cladding modes

Comparison of the single- and multi-objective EP algorithms

Examples	LPG EDFA Gain Flattening Filters (Single-objective optimization)	FBG Dispersionless Filters for DWDM OADM (Multi-objective optimization)
Number of targets	1	2
Targets	1. Desired transmission spectrum	 In-band zero-dispersion Desired reflectivity spectrum
Error functions	$E_T(\kappa_i) = \sum_{\bullet=1}^n \left T_{\text{target},\bullet} - T_{i,\bullet} \right $	$\overline{E}_{tot}(\vec{\kappa}_i) = \left[W_R \times \overline{E}_R(\vec{\kappa}_i) + W_D \times \overline{E}_D(\vec{\kappa}_i) \right]$
Fitness functions	$\mathbf{F}(\kappa_i) = \frac{1}{E_T(\kappa_i)}$	$\mathbf{F}(\kappa_i) = \frac{1}{\overline{E}_{tot}(\kappa_i)}$
Selection process	Roulette wheel selection algorithm	Roulette wheel with elitism selection algorithm:1. Keep the best for the next generation2. The with higher F has higher probabilityto be chosen
Mutation process	Adaptive with single fitness value	Adaptive with multiple actual error values

Quantum Effects of Fiber Bragg Grating Solitons

R.-K. Lee and Y. Lai, To be published on Phys. Rev. A Rapid Communication.

Conclusions

- Standard Fiber Gratings and Applications are mature technologies.
- Advanced Fiber Gratings and Applications are under intense development and will find more and more important applications.
- Precision Fiber Grating Design and Fabrication techniques are the keys for the development of advanced fiber gratings and applications.
- At IEO/NCTU we have established a firm basis for the design and fabrication of advanced fiber gratings.

Acknowledgement

Our Lab Members

Cheng-Ling Lee (李澄鈴) Kai-Ping Chuang (莊凱評) Dr. Lih-Gen Sheu (許立根, Van Nung Institute of Technology)