

Performance Monitoring in Optical Networks

Lian-Kuan Chen 陳亮光

Lightwave Communications Laboratory, Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong SAR.

> Centre for Advanced Research in Photonics The Chinese University of Hong Kong

WOCC 2004

Outline

- Optical performance monitoring (OPM): Why is it needed?
- Optical signal-to-noise ratio (OSNR) monitoring techniques
- System design aspects + future perspectives

OPM: A New Paradigm of Performance Monitoring

★at arbitrary network points

Drivers for more advanced OPM

Technological drivers:

Business drivers:

- Lower Operation & Maintenance costs
- Enable SLA and service differentiation

Examples of Service Level Agreement

- QoS measured in terms of:
 - Committed network availability
 - Provisioning time
 - Target repair time and procedures
 - Penalties
 - Interface description ...

Key Performance Indicators					
Carrier	24x7 Support	Committed Network Availability	Provisioning Time	Target Repair Time	Credits for Not Meeting Targets?
Concert Global Crossing	Yes Yes	99.90% Up to 100%*	Varies 40 to 60 days*	Yes; 5 hours Yes; 5 hours	Unclear Negotiable
GTS Carrier Services	Yes	99.70% to 99.95%	Varies	"Extensive first and second line of maintenance"	Yes; up to 1009
iAaxis	Yes	98.46% to 99.99%*	40 days	Yes; 4 hours	Yes; 5% to 30%
Level3 Communications	Yes	99.99%	Varies	2 hours	Negotiable
Qwest Communications	Yes	99.99%	Varies	2 to 5 hours*	Yes; 5% to 50%
UUNet/MCI WorldCom	Yes	Up to 100%*	20 to 40 days	Varies by country	Yes; up to 50%
*Depending on service package Source: Dataquest (January 2000)					

Ref: Roland Bach, "Need for Optical Monitoring OPM for QoS", ACTERNA Deutschland Also see "Service level agreement and provisioning in optical networks," Com. Mag. Jan 2004

> Centre for Advanced Research in Photonics The Chinese University of Hong Kong

Challenges of OPM

We care about...

WOCC 2004 Taipei, Taiwan

The broad spectrum of OPM

WOCC 2004 Taipei, Taiwan

8

Monitoring in time/frequency domain

- Time-domain
 - Eye diagram
 - BER
 - Histogram (synchronous and asynchronous)
 - Time-varying changes: PMD, jitter, power, ...
- Frequency-domain
 - Out-of-band
 - > ASE noise (less accurate)
 - In-band
 - Power
 - Wavelength
 - ASE noise (more accurate)
 - Spectral width/data-rate
 - Clock tones power for CD/PMD compensation

Ref: Need for Optical Monitoring OPM for QoS, Roland Bach ACTERNA Deutschland, OFC2003

9 WOCC 2004 Taipei, Taiwan

Three Tiers of OPM

10 WOCC 2004 Taipei, Taiwan

Compromise between cost and accuracy

11 WOCC 2004 Taipei, Taiwan

Making a judicious choice

Considerations:

- Right choice of monitoring/mitigation techniques
 - Optical monitoring techniques for WDM networks
 - Will *electronics mitigation* techniques on channel-bychannel basis drive OPM unnecessary?
- Suitable amount of monitoring
 - Effectiveness
 - Computation power (accuracy)
 - Budget
- Placement of monitoring points
 - Within one network (all nodes or some strategic points)
 - Inter-domain (ULH, metro, access, ...)
- Update Frequency

Outline

- Optical performance monitoring (OPM): Why is it needed?
- Optical signal-to-noise ratio (OSNR) monitoring techniques
- System design aspects + future perspectives

OSNR monitoring techniques

- OSNR(dB) = $10\log(P_{sig}/P_{ASE})$
- Uses of OSNR in
 - Link setup, control, and optimization
 - In-service characterization of optical signal quality
 - Correlation with end terminal BER
- Making OSNR measurements

Centre for Advanced Research in Photonics The Chinese University of Hong Kong

Reported OSNR monitoring techniques

Out-of-band: noise taken outside channel bandwidth

- +: Measurable by traditional OSA
- -: Different EDFA gains for channels, effect of optical filtering,... \rightarrow out-of-band noise in-band noise

- In-band: noise taken within channel bandwidth
 - Electrical spectral analysis
 - Polarization-assisted optical power analysis Subcarrier CNR correlation Mach-Zehnder interferometric method

Electrical spectral analysis

Orthogonal delayed-homodyne method

Ref: C. J. Youn et al, "OSNR Monitoring Technique Based on Orthogonal Delayed-Homodyne Method", OFC 2002 & IEEE PTL Vol. 14, Oct 2002.

₁₆ WOCC 2004 Taipei, Taiwan

 Monitor by polarization-nulling or by degree-of-polarization (DOP)

Signal	Noise	
Polarized	Unpolarized	

Ref: M. Petersson et al, "Multi-channel OSNR **Monitoring for WDM netw**orks", ECOC 2002

Centre for Advanced Research in Photonics

The Chinese University of Hong Kong

Monitor by polarization-nulling with off-center narrowband filtering

Ref: M. H. Cheung et al, "A PMD-insensitive OSNR Monitoring Scheme Based on Polarization-Nulling with Offcenter Narrowband filtering", Paper FF2, Proc. OFC'04.

Monitor by polarization-nulling with off-center narrowband filtering – Robustness to PMD enhanced

Monitor by polarization-nulling with off-center narrowband filtering – Robustness to PMD enhanced

WOCC 2004 Taipei, Taiwan

20

Subcarrier CNR correlation

Monitor OSNR by correlation with carrier-to-noise ratio of subcarrier

Ref: G. Rossi et al, "Optical Performance Monitoring in Reconfigurable WDM Optical Networks Using Subcarrier Multiplexing", IEEE JLT Vol. 18, Dec 2000

•	_ 5	
$OSNR = \sqrt{\frac{B_{ESA}}{\Delta v}}$	$\frac{CNR}{m^2}$	 +: Simultaneous multiple channel monitoring +: Simple
CNR : carrier – to – noise ratio		
B_{ESA} : resolut ion bandwidth of		-: Extra bandwidth needed
electrical spectrum analyzer		-: Sensitive to PMD and CD
Δv : optical bandwidth		
m : modulation	depth of subcarrier	
		Centre for Advanced Research in Photonics

The Chinese University of Hong Kong

₂₁ WOCC 2004 Taipei, Taiwan

Mach-Zehnder interferometric method

Ref: Z. Tao et al, "A Novel Method to monitor OSNR Using a Mach-Zehnder Interferometer", CLEO/PR 2001. Peking University, China

Signal		Noise	
Coherent		Non-coherent	

- +: Relatively insensitive to PMD
- +: Potentially low-cost
- +: Simple
- -: Require accurate matching of coupling ratio

OSNR Monitoring Standards

Industry standards can be found at <u>http://global.ihs.com/</u>

- BS EN 61280-2-9 Revision: 02 Chg: Date: 00/00/02
 FIBRE OPTIC COMMUNICATION SUBSYSTEM TEST PROCEDURES PART
 2-9: DIGITAL SYSTEMS OPTICAL SIGNAL-TO-NOISE RATIO
 MEASUREMENT FOR DENSE WAVELENGTH-DIVISION MULTIPLEXED
 SYSTEMS
- <u>IEC 61280-2-9</u> <u>Revision: 02</u> <u>Chg:</u> <u>Date: 10/00/02</u> FIBRE OPTIC COMMUNICATION SYBSYSTEM TEST PROCEDURES - PART 2-9: DIGITAL SYSTEMS - OPTICAL SIGNAL-TO-NOISE RATIO MEASUREMENT FOR DENSE WAVELENGTH-DIVISION MULTIPLEXED SYSTEMS
- <u>TIA/EIA-526-19</u> Revision: 00 Chg: Date: 06/00/00 OFSTP-19 OPTICAL SIGNAL-TO-NOISE RATIO MEASUREMENT PROCEDURES FOR DENSE WAVELENGTH-DIVISION MULTIPLEXED SYSTEMS

Outline

- Optical performance monitoring (OPM): Why is it needed?
- Optical signal-to-noise ratio (OSNR) monitoring techniques
- System design aspects + future perspectives

Features of advanced OPM techniques

- Comprehensiveness:
 - making measurements on multiple parameters
 - Simultaneous PMD and GVD monitoring
 - Simultaneous PMD and OSNR monitoring
 - Simultaneous wavelength, power, and path monitoring*
 - Integrate various functions (X+OPM) into a single, simple module

*Ref: K.J. Pak et al., OFC'04 FF1

Ref: D. C. Kilper et al, "Monitoring optical network performance degradation due to amplifier noise", JLT, Vol. 21, May 2003

Centre for Advanced Research in Photonics The Chinese University of Hong Kong

Centralized vs. Distributed OPM

Distributed OPM

- More information easily collected and processed
- Cost and ways to integrate OPM with in-line components are of concern

Centralized OPM

- Collect information from other segments of optical transmission links
- Process information at a strategic point
 - Example: OTDR
- Fault localization capability is a desirable feature

Other related research

Sensor Networks

Computer Tomography

- OPM in next-generation high-speed transparent reconfigurable long-haul networks is a key enabler
- OPM comprises different tiers of monitoring to cater for different needs. Both optical surveillance schemes and OSNR monitoring are indispensable.
- The key challenges for OPM: developing a cost-effective OPM technique and integrating OPM into different system design.

Not Just a Bonus Element

Uses:	Examples:
Signal quality characterization	 Relating OSNR with BER Early signal degradation alarm
Fault management	 Fault detection, localization, and isolation Resilience mechanism activation
Active compensation	Dynamic CD + PMD monitoring and compensation
<i>Quality of service (QoS)</i> <i>provisioning</i>	SLA fulfillment verification

₂₉ WOCC 2004 Taipei, Taiwan

OPM/Management & Control Plane Communications

- Dissemination of monitoring signal to the corresponding network management unit and related network elements (NE)
- How to design monitoring frequency and storage memory of NE? And also fault alarms, fault clearances and threshold setting?
- How to optimize the network planning to provide highly reliable channels for monitor and control signal dissemination and regular channels for data transmission?

Further considerations in physical layer and higher layer protocol

- Horizontal communication between nodes to isolate the problem -GMPLS LMP's "Link Verification" and "Fault Management"
- Inter-vendor collaboration

Going 40Gb/s and beyond: How OPM advances?

- Optical diagnostics with high temporal resolution, high sensitivity, or phase sensitivity needed
 - High bandwidth optical RF spectrum measurement

Ref: C. Dorrer, "New techniques for high-speed optical characterization" Paper FF5, Proc. OFC'04.

• High speed sampling techniques

Centre for Advanced Research in Photonics The Chinese University of Hong Kong