Effects of Nonlinear Phase Noise to DPSK Signals

Ricky Keang-Po Ho

Institute of Communication Engineering /Department of Electrical Engineering National Taiwan University Taipei, Taiwan

Outline

- DPSK Signals
- Nonlinear Phase Noise
- * Error Probability
- Linear Compensation
- * Summary

Why DPSK Signals? DPSK vs. OOK

- * 3-dB improvement on receiver sensitivity
- High tolerance to fiber nonlinearities
 - Low peak power, constant intensity (NRZ), or constant pulse train (RZ)
- Superior spectral efficiency (DQPSK)

DPSK Transmitter

DPSK Transmitter

Selected Direct-Det. DPSK Demo.

Rate (Gb/s)	# of channels	Distance (km)	Efficiency (b/s/Hz)	References	Comments
42.7	64	4,000	0.4	A. Gnauck et al. OFC '02 PD FC2	First demo
42.7	80	8,000	0.4	B. Zhu et al. ECOC '02 PD 4.2	
42.7	40	10,000	0.4	C. Rasmussen et al. OFC '03 PD 18	
12.3	373	11,000	0.4	JX. Cai et al. OFC '03 PD22	
42.7	64	8,200	0.8	I. Morita & N. Edagawa, ECOC '03 PD Th.4.3.1	
10.0	96	13,000	0.3	JX. Cai et al. OFC '04 PDP 34	Field trial
42.7	6	1,600	0.4	A. Gnauck et al. OFC '04 PDP 35	200-km span , EDFA only
85.4	50	4,000	1.14	N. Yoshikane & I. Morita OFC '04 PDP 38	DQPSK

Nonlinear Phase Noise

Nonlinear Refractive Index

 $n'_r = n_{r0} + \bar{n}_2 (P/A_{\text{eff}})$

* Nonlinear Phase Shift

$$\phi_{\rm NL} = \int_0^L \gamma P(z) dz = \gamma L_{\rm eff} P$$
$$\gamma = \omega_0 \bar{n}_2 / (A_{\rm eff} c)$$
$$L_{\rm eff} = (1 - e^{-\alpha L}) / \alpha.$$

With Amplifier Noise

Nonlinear Phase Noise Math Model

* Discrete

Distributed

Linear Electric Field

$$\vec{E}_N = \vec{E}_0 + \vec{n}_1 + \vec{n}_2 + \dots + \vec{n}_N \qquad \qquad \vec{E}_N = \vec{\xi}_0 + \vec{b}(1)$$

Nonlinear Phase Noise

$$\Phi_{\rm NL} = \gamma L_{\rm eff} \Big\{ |\vec{E}_0 + \vec{n}_1|^2 + |\vec{E}_0 + \vec{n}_1 + \vec{n}_2|^2 \\ + \dots + |\vec{E}_0 + \vec{n}_1 + \dots + \vec{n}_N|^2 \Big\} \qquad \Phi = \int_0^1 |\vec{\xi}_0 + \vec{b}(t)|^2 dt$$

Received Electric Field

 $\vec{E}_r = (\vec{E}_0 + \vec{n}_1 + \dots + \vec{n}_N) \exp\left(-j\Phi_{\rm NL}\right)$

 $R_b(t,s) = E\{\vec{b}(s) \cdot \vec{b}(t)\} = \min(t,s)$

Nonlinear Phase Noise p.d.f. of Φ

K.-P. Ho, Opt. Lett., Aug. 2003 and R. H. Cameron & W. T. Martin, Bull. Am. Math. Soc., 1945.

Distribution of Signals with Nonlinear Phase Noise

Simulation vs. Theory

 $<\Phi_{\rm NL}>$ = 0.0

 $<\Phi_{\rm NL}> = 0.0$

- * SNR = 18 (12.6 dB)
- Number of Spans = 32
- Transmitted Signal = (1, 0)

Distribution of Received Phase

Linear phase noise is Non-Gaussian!!

Distribution of the received phase (cont.)

- * Small $<\Phi_{NL}>$
 - Positive broadening
- * Large $<\Phi_{NL}>$
 - Negative broadening
- Independent
 - Negative broadening

$$<\Phi_{\rm NL}>\approx N\gamma L_{\rm eff} |E_0|^2$$

SNR $\rho_s = 18$

BER Formulas for DPSK Signal

With Additive Phase Noises, Independent of Gaussian Noise

With Phase Error

$$p_e = \frac{1}{2} - \frac{\rho_s e^{-\rho_s}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \left[I_k \left(\frac{\rho_s}{2}\right) + I_{k+1} \left(\frac{\rho_s}{2}\right) \right]^2 \cos[(2k+1)\theta_e]$$

With Laser Phase Noise

$$p_e = \frac{1}{2} - \frac{\rho_s e^{-\rho_s}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \left[I_k \left(\frac{\rho_s}{2} \right) + I_{k+1} \left(\frac{\rho_s}{2} \right) \right]^2 e^{-\frac{1}{2}(2k+1)^2 \sigma_{\delta\phi}^2}$$

With Nonlinear Phase Noise

$$p_e \approx \frac{1}{2} - \frac{\rho_s e^{-\rho_s}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \left[I_k \left(\frac{\rho_s}{2} \right) + I_{k+1} \left(\frac{\rho_s}{2} \right) \right]^2 \quad \left| \Psi_{\Phi} \left[\frac{(2k+1) < \Phi_{\rm NL} >}{\rho_s + 1/2} \right] \right|$$

 $\sigma_{\delta\phi}^2 \cdot = 2 \pi \Delta \nu T$

DPSK Signal with Phase Error

113

DPSK Signal with Laser Phase Noise

DPSK Signal with Nonlinear Phase Noise (Approx.)

Exact Error Probability

* Independent

$$p_e \approx \frac{1}{2} - \frac{\rho_s e^{-\rho_s}}{2} \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1} \left[I_k \left(\frac{\rho_s}{2} \right) + I_{k+1} \left(\frac{\rho_s}{2} \right) \right]^2 \left| \Psi_{\Phi} \left[\frac{(2k+1) < \Phi_{\rm NL} > \rho_s}{\rho_s + 1/2} \right] \right|^2 + \frac{1}{2} \left[\frac{\rho_s}{2} + \frac{1}{2} + \frac{1}{2} \left[\frac{\rho_s}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] \right]^2 + \frac{1}{2} \left[\frac{\rho_s}{2} + \frac{1}{2} +$$

* Dependent

$$p_{e} = \frac{1}{2} - \frac{1}{2} \sum_{k=0}^{\infty} \frac{(-1)^{k} \left| \lambda_{k} e^{-\lambda_{k}} \right|}{2k+1} \left| I_{k} \left(\frac{\lambda_{k}}{2} \right) + I_{k+1} \left(\frac{\lambda_{k}}{2} \right) \right|^{2} \left| \Psi_{\Phi} \left[\frac{(2k+1) < \Phi_{\rm NL} >}{\rho_{s} + \frac{1}{2}} \right] \right|^{2} \right| \lambda_{k} = \frac{2 \left[\frac{j(2k+1) < \Phi_{\rm NL} >}{\rho_{s} + 1/2} \right]^{1/2}}{\sin \left\{ 2 \left[\frac{j(2k+1) < \Phi_{\rm NL} >}{\rho_{s} + 1/2} \right]^{1/2} \right\}} \rho_{s}$$

Exact Error Probability (DPSK Signals)

11)

SNR Penalty A Comparison

- All approximated models underestimate the BER and SNR penalty.
- The independence model underestimates up to 0.23 dB.
- The Nicholson model underestimates up to 0.27 dB.
- Q-factor model is complete failure except at high nonlinear phase noise

Error Probability Simulation

 $<\Phi_{\rm NL}> = 0.71$ rad 32 spans

DPSK Signals

Nonlinear Phase Noise Yin-Yang Detector

 $<\Phi_{\rm NL}> = 2$ rad 32 spans

The boundary is $\theta + \alpha r^2 = \theta_0$

A compensator of $\phi_r + \alpha r^2$

Nonlinear Phase Noise Linear Compensator

 αr^2

 ϕ_r

Linear Compensator Variance of Nonlinear Phase Noise

- * Linear compensator $\Box \quad \phi_r + \alpha r^2$
- Nonlinear compensator
 - $\Box \quad \phi_r \, + \, E\{\phi_{\rm NL}|r\}$
- STD is halved
- Linear and nonlinear compensator perform the same
- Double transmission distance?

Linear Compensator For DPSK signals

- Exact BER is derived
- MMSE compensator is derived
- MAP compensator is found numerically

$$<\Phi_{\rm NL}>\approx N\gamma L_{\rm eff} |E_0|^2$$

Error Probability with Linear Compensation

Simulation

 $<\Phi_{NL}> = 1.41$ rad 32 spans

Summary

- Model of nonlinear phase noise
 - Finite number of spans
 - Asymptotic model for many spans
 - Joint distribution of amplitude and phase
- Error probability for DPSK signal
 - Approximation and exact formulas
- * Linear Compensation
 - MMSE & MAP compensation

References

Most of the materials are already in or will be in http://arxiv.org/physics/0303090

and

- K.-P. Ho, "Probability Density of Nonlinear Phase Noise," *Journal of the Optical Society of America B*, vol. 20, no. 9, pp. 1875-1879, September 2003.
- K.-P. Ho, "Compensation Improvement of DPSK Signal with Nonlinear Phase Noise," *IEEE Photonics Technology Letters*, vol. 15, no. 9, pp. 1216-1218, September 2003.
- K.-P. Ho, "Performance Degradation of Phase-Modulated Systems with Nonlinear Phase Noise," *IEEE Photonics Technology Letters*, vol. 15, no. 9, pp. 1213-1215, September 2003.
- K.-P. Ho, "Asymptotic Probability Density of Nonlinear Phase Noise," *Optics Letters*, vol. 28, no. 15, pp. 1350-1352, August 1, 2003.
- K.-P. Ho, "The Optimal Compensator for Nonlinear Phase Noise," *Optics Communications*, vol. 211, no. 4-6, pp. 419-425, June 15, 2003.
- K.-P. Ho, "Phase Statistics of the Soliton," *Journal of the Optical Society of America B*, vol. 21, no. 2, pp. 266-272, March 2004.
- K.-P. Ho, "The Effect of Interferometer Phase Error on Direct-Detection DPSK and DQPSK Signals," *IEEE Photonics Technology Letters*, vol. 16, no. 1, pp. 308-310, January 2004.
- K.-P. Ho and J. M. Kahn, "Electronic Compensation Technique to Mitigate Nonlinear Phase Noise," to be published in *Journal of Lightwave Technology*, Feb. 2004.
- K.-P. Ho, "Error probability of DPSK Signals with Cross-Phase Modulation Induced Nonlinear Phase Nosie," to be published in *IEEE Journal of Selected Topics in Quantum Electronics*, March/April 2004.
- K.-P. Ho, "Impact of Nonlinear Phase Noise to DPSK Signals: A Comparison of Different Models," to be published in *IEEE Photonics Technology Letters*, May 2004.