

A High Rate Wireless Packet Data System with Versatile QoS Support

Yucheun Jou March 8, 2004

QoS Provision in a Wireless Packet System

Inter-user and intra-user quality of service (QoS)

- Differentiate data packets with various levels of QoS
- Treat data flows differently based on their QoS requirements
- Support multiple QoS flows per user
- Reverse link (RL) QoS support
 - RL physical layer hybrid ARQ
 - Multi-flow fluid media access control (MAC)

Forward link (FL) QoS support

- Existing scheme: Provide QoS support with a QoS-sensitive scheduler
- Additional FL QoS Support:
 - Small packets and multi-user packets for delay-sensitive applications (gaming, etc.)

RL Physical Layer Hybrid ARQ

Flexible packet length with incremental transmission

- Each physical layer packet is transmitted for up to four 4-slot subpackets
 - Each slot is 1.67 ms long
- 8-slot interval between successive transmissions of the same packet
- Three 4-slot HARQ interlaces

Physical layer hybrid ARQ

- ACK/NAK sent on forward link for every subpacket
- Subpackets of a packet are soft-combined —— incremental redundancy
- Early termination improves throughput as well as delay performance

RL Hybrid ARQ Operation

Current		
Reverse	Packet 0	Packet 1
Link		

1 RL subpacket = 4 slots = 6.67 ms, three interlaces, 12 slots between subpackets of a packet

New Reverse Link	Pkt 0	Pkt 1	Pkt 2	Pkt 3	Pkt 1'	Pkt 4	Pkt 3'	Pkt 1"	
	NACK	NACK	АСК	NACK	ACK	NACK	NACK	ACK	
	NACK	NACK	ACK	NACK	ACK	NACK	NACK	ACK	

(FL ARQ Channel)

Enhanced RL Packet Structures (1)

Payload		Eff	ective Da	ta Rate (kb	ps)	Code Rate [Repetitions]				
Size (bits)	Modu- lation	After 4 Slots	After 8 Slots	After 12 Slots	After 16 Slots	After 4 Slots	After 8 Slots	After 12 Slots	After 16 Slots	
[1] 128	BPSK	19.2	9.6	6.4	4.8	1/5 [3.2]	1/5 [6.4]	1/5 [9.6]	1/5 [12.8]	
[2] 256	BPSK	38.4	19.2	12.8	9.6	1/5 [1.6]	1/5 [3.2]	1/5 [4.8]	1/5 [6.4]	
[3] 512	BPSK	76.8	38.4	25.6	19.2	1/4 [1]	1/5 [1.6]	1/5 [2.4]	1/5 [3.2]	
[4] 768	BPSK	115.2	57.6	38.4	28.8	3/8 [1]	1/5 [1.07]	1/5 [1.6]	1/5 [2.13]	
[5] 1024	BPSK	153.6	76.8	51.2	38.4	1/2 [1]	1/4 [1]	1/5 [1.2]	1/5 [1.6]	

Note: Current (payload, data rate) configurations are highlighted in blue

Enhanced RL Packet Structures (2)

Payload		Ef	fective Da	ta Rate (kb	ps)	Code Rate [Repetitions]				
Size (bits)	Modu- lation	After 4 Slots	After 8 Slots	After 12 Slots	After 16 Slots	After 4 Slots	After 8 Slots	After 12 Slots	After 16 Slots	
[6] 1536	QPSK W4	230.4	115.2	76.8	57.6	3/8 [1]	1/5 [1.07]	1/5 [1.6]	1/5 [2.13]	
[7] 2048	QPSK W4	307.2	153.6	102.4	76.8	1/2 [1]	1/4 [1]	1/5 [1.2]	1/5 [1.6]	
[8] 3072	QPSK W2	460.8	230.4	153.6	115.2	3/8 [1]	1/5 [1.07]	1/5 [1.6]	1/5 [2.13]	
[9] 4096	QPSK W2	614.4	307.2	204.8	153.6	1/2 [1]	1/4 [1]	1/5 [1.2]	1/5 [1.6]	
[10]6144	QPSK W4 & W2	921.6	460.4	307.2	230.4	1/2 [1]	1/4 [1]	1/5 [1.2]	1/5 [1.6]	
[11]8192	QPSK W4 & W2	1228.8	614.4	409.6	307.2	2/3 [1]	1/3 [1]	2/9 [1]	1/5 [1.2]	
[12]1228 8	8-PSK W4 & W2	1843.2	921.6	614.4	460.8	2/3 [1]	1/3 [1]	1/3 [1.5]	1/3 [2]	

QoS Support at RL Physical Layer (1)

Latency improvement

- Terminals have the ability to boost transmit power to force packet termination after the first, second or third subpacket transmission
 - The power boost procedure is regulated by RL MAC algorithm to meet latency requirement of delay-sensitive applications (e.g., gaming)
- Ability to start a new packet at any 4-slot boundary
 - Mean queuing delay is reduced to two slots (compared to eight slots before)

Flexible tradeoff between capacity and latency

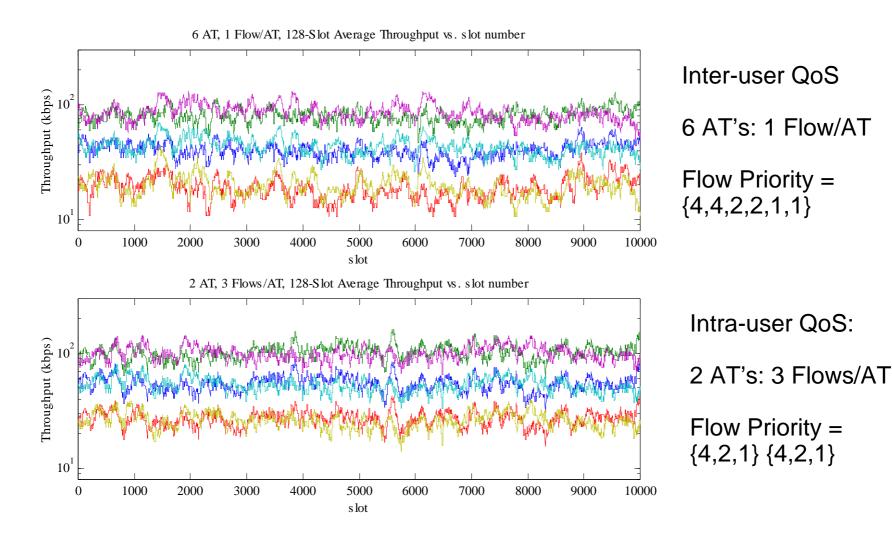
- Use longer packets to achieve better coding gain and time diversity ⇒ higher capacity
- Use shorter packets (with power boosting) to reduce transmission time ⇒ shorter delay

QoS Support at RL Physical Layer (2)

MAC layer ARQ

- Enhanced reliability of the last ARQ message for a packet
- Detect erased physical layer packet and provide retransmission directly at the MAC layer
- Result in fewer RLP layer retransmissions
- Improvement in throughput and delay

WOCC 2004, Taipei RL Sector Throughput Comparison (57-Sector Embedded Simulation)

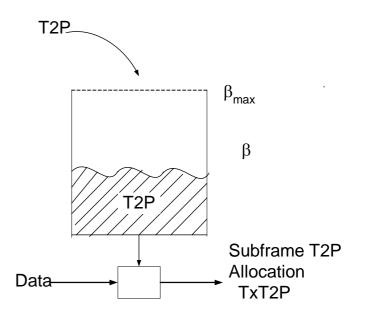

DO Rev	DO Rev. 0, No ARQ, 600 Hz PC					DO Rev. A, 8-slot termination, 150 Hz					
Chan.	Num	Sect Cap	AvgROT	Delay		Chan.	Num	Sect Cap	AvgROT	4-sl ET	Delay
Model	AT	kbps	dB	ms		Model	AT	kbps	dB	%	ms
A	10	367	5.1	40.0	3 km/h	А	10	304	5.2	83.9	13.2
В	10	275	5.4	40.0	10 km.h	В	10	245	5.3	71.2	15.8
С	10	283	5.3	40.0	30 km/h	С	10	257	5.2	74.9	15.0
D	10		5.1	40.0	120 km/h	D	10	404	5.1	70.1	16.0
Е	10	472	5.1	40.0	Rician	E	10	600	5.2	51.3	19.
Α	4	287	3.5	40.0	3 km/h	А	4	408	4.5	83.2	13.4
В	4	240	4.1	40.0	-	В	4	310	4.8		16.4
С	4		4.1	40.0	30 km/h	С	4	331	4.7		15.
D	4		3.6	40.0		D	4	462	4.6		18.0
E	4	357	3.5	40.0	Rician	E	4	773	4.8	31.4	23.
			DO Rev. A			-					
		Chan.		-	-		1	12-sl ET	Delay		
		Model	AT	kbps	dB	%	%	%	ms		
3 kn	n∕h	A	10	667	5.2	15.0			36.7		
10 k	m.h	В	10	521	5.3	9.6		87.7	40.5		
30 k	m/h	С	10	543	5.2	13.6	1	90.5	37.2		
120	km/h	D	10	691	5.1	4.0	46.2	88.6	42.2		
Rici	an	E	10	912	5.3		18.7	78.5	50.4		
3 kn	ı/h	A	4	776	4.6				38.9		
10 k	m.h	В	4	661	4.8			85.87	42.9		
30 k	m/h	С	4	687	4.7	8.44		89.26	39.5		
120	km/h	D	4	816	4.6	1.41	36.91	85.81	45.2		
Rici	an	E	4	1001	4.9	0.11	12.07	75.07	52.6		

RL MAC Enhancement

- Ease of design for QoS
 - Rapid control of relative throughput and delay among application flows
 - Unified approach to inter-user and intra-user QoS
 - Differentiation of flows within an access terminal (AT) is treated in the same way as flows from different ATs
- Improved performance for bursty and fixed-rate sources
 - Reduced delay and delay variance
 - Rapid and efficient resource usage
- Improved closed-loop control of system loading
 - More predictable ROT dynamics
- Enhanced access channel reduces call setup time
 - Shorter and more flexible preamble length
 - Allow access channel data rates up to 38.4 kbps
- Flexible rate allocation at each AT via autonomous as well as scheduled mode
- Compatible with existing physical layer

WOCC 2004, Taipei Example of Unified Approach to Inter-user and Intra-user QoS

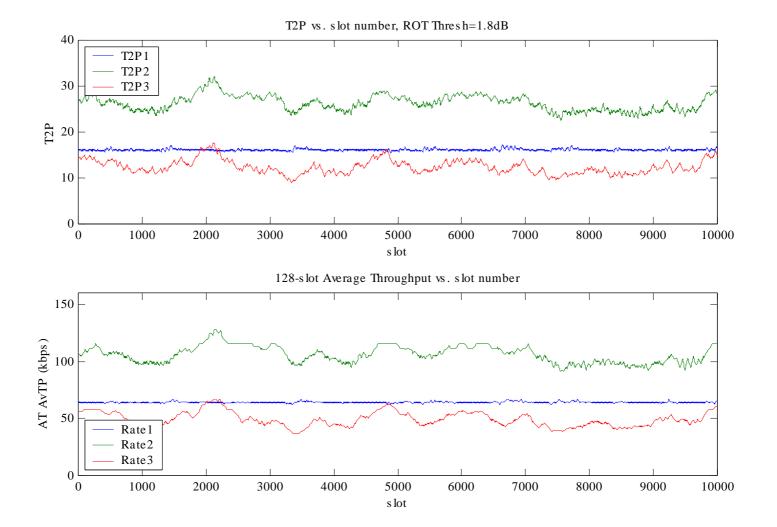

LIALCONN[®]


RLMAC Operation

• Current RL Mac

 Probabilistic rate determination at the AT based on Reverse Activity Bit (RAB)

- Enhanced RL MAC
 - If QRAB = 1 (busy), reduce AT's continuous state variable T2P by gd(.)
 - If QRAB = 0 (not busy), increase T2P by gu(.)
 - The actual transmit rate is chosen for each packet such that the average matches the state variable T2P



QoS Design in RL MAC

- T2P relative priority
 - Flows can be allocated relative priority, specified by the relative priority weighting C_i
 - C_i indicates the flow's relative sector resource usage, in relation to other relative priority flows
 - $C_i = 2C_i$ implies that flow i should get twice the throughput of flow j when they have the same active set
 - Ramp functions gu(.) and gd(.) for flow i are determined based on C_i
- T2P fixed allocation
 - Flows can be allocated a fixed T2P, specified as T2P_{fix}
 - The flow very quickly achieves a T2P_{fix} allocation, but may be restricted from going beyond it
- Source burstiness design
 - Flows with bursty sources may transmit a high-rate burst after being idle for sometime
 - Flows are designed with a burstiness constraint, specified as $\beta_{\text{fact}}(\text{T2P})$
 - β_{fact} (T2P) indicates the max factor above the current T2P allocation which can ever be used in one allocation
 - Allows efficient handling of bursty sources while under average T2P allocation

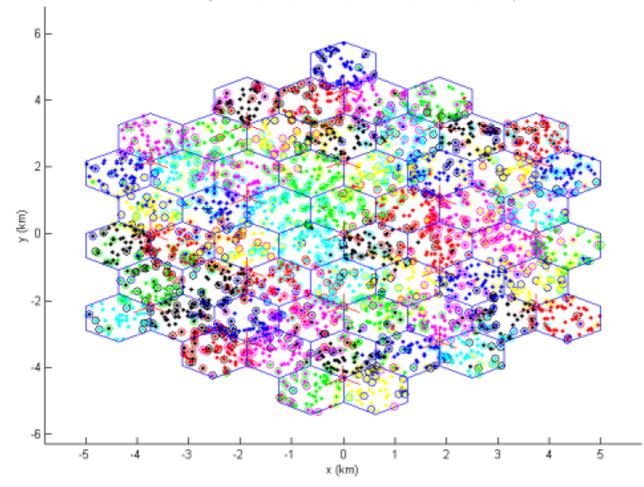
WOCC 2004, Taipei T2P Allocation Example: One Flow at Fixed T2P = 16 Two at Relative Priority C = 0.5, 1.0

WOCC 2004, Taipei Reverse Link Application Performance Evaluation

- Simulations run under 3GPP2 Evaluation Methodology
 - 19-cell, 57-sector layout with wraparound
 - Mix of 5 channel models with various fading velocities and multipath
 - Link budget scaled to cdma2000[©] overlay for application simulation
- Data source models

VoIP

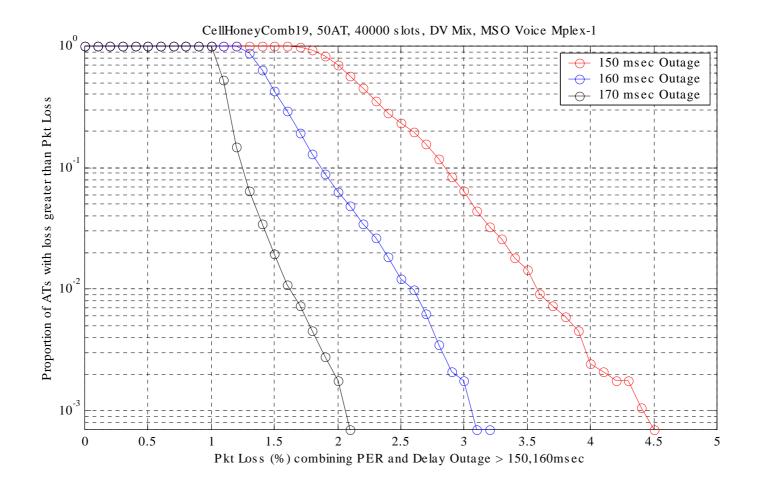
 TIA/EIA IS-871 Markov Service Option (MSO) for cdma2000 Spread Spectrum Systems model used for voice


+ Average rate 3.2 kbps

- † Multiplex Option 0x01 used (8kbps), no blanking, minimum rate of 1/8
- 4-frame bundling (80 msec)
 - † Design for max delay 160 msec (80 msec bundling + 80 msec transmission)
 - † 16-slot termination goal
- Gaming
 - 9.6 kbps fixed rate
 - **†** Fixed packet size arriving every 40 msec
- Video
 - Simple video source which models 10 fps QCIF video source
 - † 43 kbps of video, fixed packet size arriving every 100 msec
 - **†** Same audio as in VoIP case, IS-871 MSO

Performance Evaluation 57-Sector Layout

CellHoneyComb19, 50AT, -1.0km/hr, 7.0dB ROT, 20000 slots, 1 snap



RL Applications Performance

Criteria		1xEV-DO	1xEV-DO	
		Rev 0	Rev A	
VoIP Capacity	# Users/Sector	34	50	
	Packet Loss < x % with Delay Outage > y ms	(2%, 170 ms)	(2%, 160 ms)	
Gaming Capacity	# Users/Sector	25	30	
	Mean Packet Delay	40 ms	17 ms	
Video Telephony Capacity	# Users/Sector	6	10	
	Packet Loss < x % with Delay Outage > y ms	(10%, 200 ms)	(2%, 200 ms)	

WOCC 2004, Taipei RL VOIP Capacity, AT Packet Loss Statistic 57-Sector, 50 AT/Sector, Rev. A, DO Link Budget

Forward Link QoS Enhancements

- Enhanced QoS support via small packets
 - Addition of new small payload sizes: 128 bits, 256 bits, 512 bits
 - Enables FL scheduler to better serve delay-sensitive data to users in adverse channel conditions
 - Small packets for control channel improves paging performance
- Packet division multiplexing
 - Multiplexing small upper-layer packets from one or more users into a single physical-layer packet
 - Enables FL scheduler to serve data from different QoS flows to one or more users simultaneously
 - Improved link utilization while serving delay sensitive applications
- Data Source Control (DSC) Channel introduced (on RL) to indicate the desired forward-link serving cell
 - Minimize service interruption due to server switching on FL
 - Improved user experience for applications such as wireless gaming and video telephony

Concluding Remarks

- An wireless packet data system providing advanced QoS support is described
- Commercial systems are being built based on this design
- cdma2000 1xEV-DO (1x Evolution Data Optimized)
 - = TIA-856 standard
 - Revision A contains all the enhancements described herein