Exploiting Multi-Dimensional Diversity in Distributed Resource Management for Mobile Ad-hoc Networks

Qinqing Zhang

April 24, 2008

Qinqing Zhang, Ph.D
qinqing@ieee.org
1-443-778-7213
Outline

- Motivation and Background
- Challenges and Our Research Focus
- System Model
- Distributed CSMA/CA Medium Access Control with Multi-Dimensional Diversity
- Performance Analysis
- Conclusion
Background and Motivation

- Mobile Ad-Hoc Network (MANET)
 - An autonomous system consisting of mobile nodes connected by wireless links
 - Main characteristics
 - Random movement and arbitrary organization of the nodes -- Rapid and unpredictable change in **topology and connectivity**
 - Each node in a MANET acts as a router, forwarding data packets to other nodes - a **decentralized network**
 - Data packets may reach destination via multiple relaying nodes -- **multi-hop transmission**
 - Widespread research activities in MANET
 - Topology and mobility control
 - Network protocol design across all layers
 - System level design and deployment
 - Variety of applications in both commercial and military sectors

A key technology for tactical edge systems
Medium Access Control (MAC)

- **MAC is part of the link layer protocol**
 - Specify the rules by which a frame is transmitted onto the link
 - Coordinate the frame transmissions of many nodes sharing a broadcast link – multiple access control

- **Other link and MAC layer functions**
 - Error control, power control, transmission format selection

- **Significance in MANET**
 - Achievable system capacity and performance highly depends on MAC protocol design

- **Typical MAC protocols**
 - Channel partitioning protocols: FDMA, TDMA, CDMA
 - Random access protocols: ALOHA, Slotted ALOHA, CSMA
 - Taking-Turns protocols: polling, token-passing

- **Carrier Sense Multiple Access (CSMA): listen before speaking**
 - With collision detection: CSMA/CD, used in Ethernet
 - With collision avoidance: CSMA/CA, used in 802.11 WLAN

The Internet Protocol Stack
Challenges and Our Research Focus (1)

- **Key challenge:** Designing radio resource management in a distributed network
 - Without a fixed infrastructure in traditional wireless networks, control and management of MANET have to be distributed across all nodes
 - Distributed radio resource management is a much more challenging problem than a centralized approach
- **Main issues**
 - Hidden terminal problem
 - Exposed terminal problem
 - Deafness problem
 - Throughput degradation in multi-hop transmission
Challenges and Our Research Focus (2)

- Focus of our research: multi-channel and multi-interface MAC design
 - Threshold based medium access control to explore multi-dimensional diversity
 - Distributed medium-adaptive scheduling algorithm to provide QoS applications
 - Joint channel assignment and routing algorithm design
 - Secure multi-path routing to improve robustness and resilience
Multi-Channel Multi-Interface MAC Design

- Assumptions
 - There are total of N channels available in the spectrum
 - Each node is equipped with M radio interfaces, and $M \leq N$
 - Each interface is capable of switching to one of the N channels with a switching delay δ_s
- Exploiting diversity gain in multi-dimensions
 - *Frequency diversity*
 - *Time diversity*
 - *User diversity*
 - Spatial diversity
Exploiting Diversity in Distributed MAC

- Key idea: threshold based medium access control
 - A node accesses the medium when its channel state is good
 - Channel estimation and prediction
 - Threshold adaptation

Outcome: coordinated transmission via distributed/localized operation
System Model

- Mobile ad-hoc system architecture
 - No centralized entity controlling the medium access and transmission
 - Each mobile node acts as a router
 - A data packet may reach its destination through multiple relaying nodes, i.e., multi-hop transmission
- CSMA/CA MAC protocol as the basis of our design
- RTS/CTS handshake option

Source: IEEE 802.11
Distributed CSMA/CA MAC Protocol (1)

- Channel estimation and transmission rate selection
 - Receiver based estimation based on the received SINR of a frame
- Adaptive threshold based medium contention
 - A mobile node sends a RTS frame to the receiving node for channel reservation
 - Upon receiving a CTS frame with the indicated transmission rate, the mobile node compares it with a threshold
 - If it is above the threshold, the mobile node sends the data frame. Otherwise, it aborts the transmission and waits for the next contention opportunity
Distributed CSMA/CA MAC Protocol (2)

- Methods for threshold setting
 - A common threshold for all the nodes
 - maximize the throughput, but lack of fairness among heterogeneous nodes
 - Adaptive threshold at each node
 - Improve the throughput and also achieve fairness

\[T_{new}^j = \rho \cdot (\alpha R^j + (1 - \alpha)T_{old}^j) \quad \alpha, \rho \in [0,1] \]

- Channel probing and estimation overhead
 - Critical in tracking the time varying RF channel
 - Introduce additional overhead in a distributed system
 - This overhead will hamper the diversity gain and cost the system throughput eventually
 - Careful design to achieve the best tradeoff
Performance Analysis and Evaluation (1)

- Network simulation results
 - Average transmission rate has an increase between 35% - 60%, with good RF conditions of the nodes.
 - The gain comes from time and user diversity
 - The quantitative results are limited by the current rate sets in 802.11b. Further improvement can be achieved with advanced PHY design
 - The aggregate throughput increase is hampered by the additional overhead of RTS/CTS handshake
Performance Analysis and Evaluation (2)

- Theoretical analysis
 - Average throughput with a threshold

\[
C_t = \int_1^\infty f(n)dn \int_{R_i}^\infty f(r_i)dr_i \int_0^\infty f(T_i)dT_i \cdot \frac{B}{\sum_{i=1}^{n}T_i + B/r_i},
\]

where \(n\): number of contensions; \(T_i\): contention duration;
\(B\): MAC packet size; \(r_i\): transmission rate; \(R_i\): rate threshold

The pdf \(f(\cdot)\) of r.v., \(n, T_i,\) and \(r_i\), can be obtained and used to calculate the throughput per node \(C_t\)

- Existing 802.11 MAC design has a poor efficiency, i.e., \(~40 – 50\%\) of the link capacity
 - This further hampers the potential diversity gain if using the existing timing and synchronization structure
Performance Analysis and Evaluation (3)

- Experimentation and Research Testbed Development
 - Objective:
 - Demonstrate and validate the designed protocols/algorithms in realistic operating conditions
 - Provide a close-to-reality testing environment to facilitate technology transition
 - Gain experiences in developing and implementing a research testbed to facilitate wireless networking research
 - Technical Approach
 - A laboratory emulator/field trial network testbed
 - A set of static and mobile 802.11x radio nodes
 - Each node can be equipped with different radio interfaces
 - 802.11a/b/g, GNU radio, Zigbee
 - Dynamic configuration of the topology of the connections of the nodes
 - The protocols at different layers can be designed and emulated
 - PHY: designed via the GNU radio interface
 - MAC: designed via the driver API
 - Networking: designed via LINUX kernel
 - Application: implemented at the PC node itself
Conclusion

- Distributed radio resource management for MANET
- Adaptive threshold based MAC protocol to exploit time and user diversity
- Other work on joint channel assignment and routing algorithm design, secure multipath routing
- The performance improvement highly depends on the network topology and link variation in MANET
- The achievable diversity gain in MANET is expected to be smaller than the gain in a centralized network
- Providing robustness and efficiency improvement in MANET remains a challenging task