An Optical-Header Processing and Access Control System for a Packet-Switched WDM Metro Ring Network

WOCC 2008

Prof. Maria C. Yuang

Department of Computer Science and Information Engineering,

National Chiao Tung University, Taiwan

Outline

- Introduction
- Optical-Header Processing and Access Control System (OPACS)
 - System Architecture
 - MAC Scheme: Distributed Queue with Multi-Granularity and Multi-Window (DQMGW)
 - Performance Comparisons
- Experimentation and Results
- Conclusions

Introduction

- Future optical metro networks are expected to cost-effectively satisfy a wide range of heterogeneous traffic with different time-varying and high bandwidth demand
- Optical Packet-Switching (OPS) employs statistical multiplexing to share wavelengths among multiple users
- Our work focuses on OPS-based access control system under slotted-ring-based optical WDM networks
- The OPS-based access control system includes:
 - Header processing/control (in-band-based)
 - Medium Access Control
- In-band-based header control differs from out-of-band header control

In-Band vs. Out-of-Band Header Control

Out-of-Band Header Control

- Requires an additional control channel
- Drawbacks
 - + Inefficiency
 - + Low reliability
 - + Low scalability

In-Band Header Control

- High efficiency and scalability
- Prevailing approach: SubCarrier
 Multiplexed (SCM)
- SCM drawbacks
 - + Baseband expanding may overlap subcarrier frequency
 - + Needs large # of O/E/O devices

Our Goal

To propose a system:

Optical-Header Processing and Access Control System (OPACS)

Achieving:

- Efficient In-band header control
 - Header and payload are time division multiplexed
 - Optical headers are in parallel efficiently received, modified, and re-transmitted by wavelength/time conversion techniques
- High-performance MAC
 - Dynamic bandwidth allocation
 - High performance on delay, throughput, and fairness
 - + Low load → random access, low delay and jitter
 - + High load → guaranteed per-user bandwidth
 - High scalability and modularity

System Architecture

- Operates at nodes interconnected via dual unidirectional fiber ring
- Each node is equipped with one tunable transmitter and one tunable receiver for each ring
- System architecture

EA Modulator

- MAC processor determines certain bits to be updated
- MAC is specially designed so that header bits are always changed from 1 to 0
- EA Modulator simply attenuates those optical pulses to be updated

MAC Scheme- DQMGW

- **DQMGW= Distributed Queue with Multi-Granularity and Multi-Window**
- DQMGW enables dynamic bandwidth reservation in space (granularity) and in time (window)
 - Multi-Granularity: allows to reserve different # of slots in a request
 - Multi-Window: permits multiple reservation requests

Performance on Normalized Throughput

- DQBR & WDMA: poor statistical multiplexing gain (throughput deterioration)
- DQMGW achieves the same degree of bandwidth efficiency irrespective of the wavelength number and load

Simulation parameters:

Number of nodes = 48

Inter node distance

(D) = 10 slots

Performance on Access Fairness

- Under different burstiness settings
 - Delay unfairness is manifested in both DQBR and WDMA
 - DQMGW guarantees delay fairness due to the multi-window design

The Impact of Multi-Window Design

- Single Window Multiple Granularity (SWMG): DQMGW with window size=1
- SWMG suffers throughput unfairness as the load is above 0.8, DQMGW guarantees fairness under all loads

Simulation parameters:

Number of nodes = 48

Number of wavelengths = 4

Inter node distance = 10 slots

Experimental Setup

- Header: RZ-encoded and 26 bits long at a data rate of 1 Gb/s
 - Includes 8-bit preamble, 4-bit header control and 6-bit address
- Payload: NRZ-encoded and 250 bytes long at a data rate of 10 Gb/s

OADM: Optical Add/Drop Multiplexer;

Experimental Results- Header & Payload

Conclusions

- We have proposed a novel system, OPACS, encompassing an efficient in-band header control and high-performance MAC
- By making use of wavelength/time conversion techniques, optical headers are efficiently received, modified, and retransmitted
- OPACS uses the DQMGW to enable dynamically bandwidth allocation on space (granularity) and on time (window)
- Compared with two existing approaches (HORNET DQBR and WDMA), OPACS achieves higher throughput, lower packet delay, and exceptional fairness under various traffic settings
- Experimental testbed demonstrates the viability of OPACS