Network Optimization of Optical Performance Monitoring

Lian K. Chen (陳亮光)
The Chinese University of Hong Kong
Hong Kong, SAR, China

Outline

- Motivations
- Advanced Monitoring Techniques for point-to-point link
 - OSNR Monitoring
 - Chromatic Dispersion Monitoring
 - Multi-impairment Monitoring
- Optimization of performance monitoring networks
 - Optimization of Fault-diagnosis with Minimum Probing
 - Algebraic Monitoring Network
 - Other related works
- Conclusions

Optical Performance Monitoring

Definition: Physical layer monitoring of the signal quality, for the purpose of determining the health of the signal in the optical domain

Ref: A. Vukovic, H. Hua, M. Savoi	ie, "Performance
Monitoring of Long-haul Networks	", Lightwave Magazine
(2002)	

Applications:	Examples:
Signal quality characterization	Relating OSNR with BER
	Early signal degradation alarm
Fault management	Fault detection, localization, and isolation
	Resilience mechanism activation
Active compensation	Dynamic CD + PMD monitoring and compensation
Quality of service (QoS) provisioning	SLA fulfillment verification

Wish List for the Enhancements of OPM

- higher dynamic range;
- higher sensitivity;
- robustness to various effects;
- multi-impairment monitoring; and
- lower cost.

But how?

Optimization of Performance Monitoring System

OSNR monitoring module

Experimental results: 10Gb/s, back-to-back

Without PMD:

- Monitoring error < 0.25 dB
- 40-dB monitoring dynamic range

With PMD:

- Influence of DGD
 - reference OSNR 25 dB/0.1nm
 - Monitoring error < 0.25 dB

Experimental results: 10Gb/s, 150km, w. ~1.5ps PMD

- Influence of <u>chromatic</u> <u>dispersion</u> and transmitted power
 - An EDFA was added after each 50-km SMF span
 - EDFA output power1 or 10 dBm

Experimental results: 10Gb/s, back-to-back, w/ polarized noise

- Influence of partially polarized noise
 - Worst case: DOP=99.69%

Chromatic Dispersion (CD) Monitoring

Previous work on chromatic dispersion monitoring

- Clock phase difference monitoring
 - Pros: No need to modify transmitter, highly sensitive
 - Cons: requires high-speed electronics

Ref.: Q. Yu, et. al., IEEE JLT, 20, 2267-2271 (2002)

We propose to use a birefringent fiber loop (BFL) to realize a simple, polarization insensitive CD monitoring scheme without transmitter side modification, and demonstrate in NRZ system

Ref.: Y.C. Ku, et. al., OFC 2006

Proposed Dispersion Monitoring Module based on BFL

Measure RF power at dispersion dependent frequency dip (f_{RF})

$$P \propto \sin^2\left(\frac{\varphi_{\Omega} + \varphi_{-\Omega}}{2}\right) = \sin^2\left(\frac{\pi\lambda^2 f_{RF}^2}{2}D\right)$$
$$f_{RF} = \Omega/2\pi = 1/2\tau$$

Ref.: Y.C. Ku, et. al., OFC 2006

Experimental Result

- Measured unambiguous monitoring range: 1500 ps/nm for 10-Gb/s NRZ signal
- In principle, monitoring range can reach $c/2\lambda^2 f_{RF}^2 = 2497$ ps/nm

Multi-impairment Monitoring

Multi-impariment monitoring - Delay Tap

Asynchronous Waveform Sampling

Combines asynchronous sampling with two tap delay lines, so that each sample point comprises two measurements (x and y), separated by a fixed time corresponding to the delay length.

Sarah D. Dods and Trevor B. Anderson, "Optical Performance Monitoring Technique Using Delay Tap Asynchronous Waveform Sampling", OFC OThP5, 2006

Application of asynchronous sampling in PMD monitoring

 $m = \frac{\text{number of sample points falling on the left and the bottom edges}}{\text{total number of sample points on the scatter plot}}$

The proportion of sample points on the left and bottom edge is used as the effective parameters to evaluate PMD value

Application of asynchronous sampling in misalignment monitoring for RZ-OOK

The increasing dispersion and rotation of the sample points on the diagonal can serve as effective parameters to evaluate alignment status

$$d = \frac{1}{n} \sum_{i} \sqrt{x_i^2 + y_i^2} \sin\left(\left|\frac{\pi}{4} - \arctan\frac{y_i}{x_i}\right|\right)$$
$$t = \frac{1}{n} \sum_{i} \arctan\frac{y_i}{x_i}$$

Ref.: Y.C. Ku, et. al., ECOC 2006

d: deviation from diagonal linet: average angle of sample points

Experimental results

Sign and amount of misalignment can both be estimated

Correlation of Monitored Parameters

- Monitored parameters may be correlated.
- The monitoring schemes need to be able to differentiate different possible impairments

Table 2/G.697 – List of correlation between the underlined impairments and monitoring parameters

Parameters	Total power	Channel power	Channel wavelength	OSNR	Q-factor
Variation of attenuation	X	X		X	X
Frequency (or wavelength) deviation from nominal		X	X	X	X
Optical channel power changes due to gain variations		X		X	X

Ref: ITU-T G.697 Optical monitoring for DWDM systems

Question:

- Can we derive one parameter based on the measurement of the other parameters?
- How about other dimensions of correlations, e.g. spatial & temporal?

Optimization of Performance Monitoring System

Consider a performance monitoring system S_{PM} that is formed by all the monitoring devices in a network and the corresponding measurements

Optimization of S_{PM}:

- 1. the minimum number of monitors required
- 2. the optimal locations of the monitors monitor placement problem
- 3. the minimum number of measurements needed ——— OPE

Issues:

- static network vs. dynamic (reconfigurable) network
- distributed vs. centralized monitoring

Centralized vs. Distributed OPM

- Monitoring
- Diagnosis

distributed monitoring/ centralized diagnosis

centralized monitoring/ centralized diagnosis

single monitoring point for the whole network

Number and Placement of OPM

Optimization of Placement and Amount of OPM needed

- ▶One-monitor-per-link/component is not optimum if we consider
 - ♦ failure probability of link/component
 - ♦ scalability with the network size
 - ◆amount of redundant alarm

1. Channel-Based: Design Based on Established Lightpaths

Ref: Sava Stanic et al, "Efficient alarm management in optical networks", in Proc. DARPA Information Survivability Conference and Exposition 2003, pp. 252-260

Optimal monitor placement (M): monitor

✓ In-service channel performance based

✓ Reduce monitor number considerably × For static network only

Number and Placement of OPM

2. Network-Based: Design Based on Network Topology

E.g. Break down a network into a number of "monitoring cycle" and assign a monitor to each, using an extra supervisory wavelength to probe the health of the cycle

- √ Suitable for dynamic networks
- Does not measure in-service channel quality
- √ Reduce monitor number considerably
- ×Extra wavelength needed

Scalable Network Diagnosis for All-Optical Networks via Group Testing Over Graphs

Y. G. Wen, V.W. S. Chan and L. Z. Zheng, "Efficient Fault Diagnosis Algorithms for All-Optical WDM Networks with Probabilistic Link Failures (Invited Paper)," *Journal of Lightwave. Technology*, vol. 23, no. 10, October 2005, pp.3358-3371.

Asymptotically Optimal Run-Length Probing Schemes via an Information Theoretic Approach

0010000000001000000

Probe Syndrome

FFSSSFSFFS ⇒ 1100010110

- Guidelines for Fault Diagnosis Algorithms
 - The total number of probing is approximately equal to the entropy of the network state
 - Each probe should provide approximately 1 bit of state information

Network Diagnosis – an algebraic approach

Objective: To find an efficient way to determine the quality of different paths, so that it can be used as a metric for path computation in the network layer for channel setup

Folder diagnosis that explores the spatial

comenaition monitors the mental and monitors

New request to setup c₃

NO estimation

S.T. Ho, L.K. Chen, C.K. Chan, "On Requirements of Number and Placement of Optical Monitoring Modules in All-Optical Networks," OECC, paper 7A2-2 (2005)

Linear expressions of optical impairments

Noise Figure (NF)

$$NF_{overall} = NF_1 + \frac{NF_2}{NF_2} + \frac{NF_3}{NF_3} + \cdots + \frac{NF_k}{NF_N}$$
 G_{ci} : Noise figure of the i^{th} hop
 G_{ci} : cumulative gain up to i^{th} hop

Chromatic dispersion (CD)

$$CD_{overall} = \Delta \lambda \cdot (L_1 \cdot D_1 + L_2 \cdot D_2 + \dots + L_k \cdot D_k)$$

 $\Delta\lambda$: spectral width

D: dispersion parameter L_i : total length of l^{th} hop

Polarization-mode-dispersion (PMD)

$$PMD_{overall}^{2} = \sum PMD_{fiber}^{2} + \sum PMD_{component}^{2}$$

Overall impairment for all paths can be derived from impairments of individual fiber link and component

A sample network

 $X_1 - X_5$: Impairments on

links

 $X_6 - X_9$: Impairments on

nodes

 $c_1 - c_3 : 3$ probing channels

O: Node with monitoring module

Accumulated impairment of c_1 :

 X_4

Accumulated impairment of c_2 :

Accumulated impairment of c_3 :

 $x_2 + x_8 + x_3$

(The monitoring module contain both monitoring source and monitoring detector.)

27

Problem formulation

M: Monitoring Matrix

x: individual impairment

y: Accumulated impairment

Q: What is the minimum number of monitoring modules and where should they be placed?

Chamber north an porto by time division marmer or by proper labeling

Bus & Ring networks

Two-link-connected network

 \mathcal{C}_{green}

 $\underline{Impairment}(c) = Impairment(c_{green}) - Impairment(p_{red}) - x$

Summary of Algebraic Network Diagnosis

- Proposed a novel algebraic approach of monitoring optical impairments in both un–directional nodes and links
- Proved that two monitoring modules are <u>necessary and sufficient</u> to support our monitoring scheme in two-link-connected network
- For every node that becomes a leaf node after removal of all leave nodes in the original network, installing one monitoring module at it is necessary and sufficient to support the proposed probing scheme
- For general networks with bridges, first transform the network to a tree-like structure and then solve it by "divide-and-conquer" method
- With the probing scheme, any single-fault can be located in the whole network

Intelligent Fault Diagnosis for Optical Networks: Detection, Isolation and Prognosis

Two fault-diagnosis formulation approaches:

Conclusions

- OPM in next-generation high-speed transparent reconfigurable networks is essential
- Enhancements of OPM, including higher dynamic range, higher sensitivity, robustness to various effects, and multi-impairment monitoring, are desirable to make the OPM system more effective.
- By exploring the correlation of different spatial or time domain information, it is possible to further enhance the efficiency of OPM.
- Some works on the Optimization of OPM network to derive theoretical bounds for the min. number of monitoring module or the number of probing are presented.

- Acknowledgement:
 - Projects supported in part by Hong Kong SAR Government CERG Grant 411006
 - Contributors S.T. Ho, Z.C. Xie, Y.C. Ku, C.K Chan, and Y.G. Wen

The End