

Optical Interconnects: Trend and Applications

Yi-Jen Chan EOL, ITRI

Wireless & Optical Communications conference 2008 April 23, 2008

✓ Background and Motivation

- ✓ Trends of Optical Interconnects Technology and Application
- ✓ OI Research In EOL/ITRI
- ✓ Summarization

Short Reach Optical interconnects Volumes

工業技術研究院

Decreasing Distances→

Source from Luxtera

-demanding for short-range optical communication is booming, including rack to rack, board to board and chip to chip

Microprocessor Clock Speed Constraints

Power constrain frequency scale-up: low power multicores replace single high-power core

CPU Moore' Law Scaling Bottleneck

Power density

256GFlops, Internal 1.5TBps

-Thermal problem limits CPU clock rate, and performance. -Multi-core solution results in larger RC delay.

Electrical Interconnects Limits on PCB

-Beyond 10GHz, copper interconnects on FR4, become bandwidth limited. -It is due to frequency depend loss, the skin effect and the dielectric loss . -The effect of reflection and cross talk on electrical interconnect are also challenge to designer.

工業技術研究院 Industrial Technology Cable Management – Weight and Cost of Copper

Latency is an issue for 10G copper above 10m with encoding

Optical Interconnects Hierarchy

When & where: Optical interconnects trends from Long to Short in link Hierarchy

	Internet, Wide Area Network	Local Area Network	Rack-to- Rack	Board-to- Board	On Board	On-MCM	On-Chip
						-	
Distance	Multi-km	10-2000m	30+m	1m	0.1-0.3m	5-100mm	0.1-10mm
Number of lines	1	1-10	~100	~100-1000	~1000	~10,000	~100,000
Use of optics	Since the 80s and the early 90s	Since the late 90s	2005	2010+	2010-2015	Probably after 2015	Later, if ever

Source from IBM, 2005

Advantages of Optical Interconnects

- Highest and future-proof bandwidth
- High density integration on a low-cost board
- Lower crosstalk/coupling between sub-modules
- Simpler physical layout, efficient system architecture
- •Compatible with board material and fabrication technology

Elements of Optical Interconnects

- Electronics Chips
- OE Modules
 - Laser, PD
 - Driver, TIA, Post amplifier
- Optical Link
 - Fiber, Waveguide, Free space
 - Buried, On-Board
- Coupling Optics
 - Direct Coupling
 - Micro Array Lenses
 - 45° Mirror

Background and Motivation Trends of Optical Interconnects Technology and Application OI Research In EOL/ITRI

✓ Summarization

	Intel	IBM	IBM		EU-IO Project		NEC		Korea ICU	
Solution	-SiOB(B2B) -FCPGA(C2C) -Silicon laser -MM Fiber Array	-Si Module -Rigid OECB	-SMT O/E Pack -POF on Flex, G Sheet OECB		Package ex, Glass CB	-MM Fiber Array		-MM Fiber Array and Mini- Connector -Rigid OECB		
Application	Backplane, Sever, CPU	Backplane, Seve Supercomputer	Backplane, Sever, Supercomputer		Backplane, Sever, SupercomputerBackplane, Supercomputer		plane, Sever, rcomputer		Backplane, Sever, Supercomputer	
	Nokia	Samsung	Pa	nasonic	Sumito Bakeli	mo ite OMRON			EOL/ITRI	
Solution	-Flexible OECB	-Flexible OECB	exible OECB -Flexib		-Rigid OECB -Flexible OECB		-Flexible OCB		-Rigid OECB -Flexible OECB	
Application	Cell Phone	Cell phone	Cell Ph Camer	ione, a	Cell Phone		Cell Phone		Backplane, Cell Phone	

Backplane Applications

Source from Panasonic and Omron Consumer Electronics

Copper FPC vs Flexible OECB

Copper FPC

	Copper FPC	Flexible OECB	Improvements	
Speed	800Mbps/Ch	2.5Gbps/Ch~10Gbps/Ch	Speed increases 3~10 times	
Transmission Line	-6+ layer air-gap Flex -50+ Electrical lines	-4Channel Optical Lines, 8 Electrical Lines	-Less transmission lines -Reduce connector complexity	
Size	20~30mm	2~3mm	Increase industrial design flexibility	
EMS	EMI radiation and crosstalk	Eliminate EMI problem	-Reduce time and resources spent on solving EMI issues before products launch	
Power Consumption	large	small	Less power consumption and thermal heat	
Mechanical	Coppers easily fatigue under repeated bending	More flexible	Increase mechanical flexibility	

Flexible Optical Circuit Board OE Module

Omron(2005)

Panasonic(2005)

Sumitomo Bakelite(2006)

Advantages of Flexible Optical Interconnect

- 1. Reduce flex connector complexity
- 2. Eliminate EMI
- 3. High bandwidth potential
- 4. Simply layout & board lamination (Compliant with PCB Process)
- 5. Increase mechanical/industrial design flexibility
- 6. Compact size
- 7. Flexible
- 8. Lower power consumption

Opto-Electrical Circuit Board (OECB)

	Rigid	Flexible			
Fiber					
Waveguide					

OE Module and OECB Optical Integration

SMT Compatible Optical Interface

Source from Uhgent, 2007 Optical Connector

Source from UCSB, 2006

Evanescent Coupling

Optical Backplane of Fiber Flexible OECB

Background and Motivation Trends of Optical Interconnects Technology and Application Ol Research In EOL/ITRI

✓ Summarization

Polymer Waveguide Fabrication

Waveguide Fabrication Using UV Photolithography

Waveguide on Silicon Substrate

Flexible Waveguide Film

Waveguide Performance Evaluation

Measurement Setup

Cut back Channel loss~< 0.3dB/cm

Waveguide Embedded OECB

Features

工業技術研究院

- Conforms to the SNAP 12 MSA
- 12 Independent transmitter/Receiver channels
- Data rate up to 2.7Gbps per channel
- Whole flexible circuit board design
- Injection molding types lens cap
- Receiver sensitivity < -16dBm

Injection molding lens cap

12 x 2.5Gb/s Chip to Chip on Glass Substrate

12 x 2.5Gb/s Chip to Chip Optical Interconnection

Eye Diagram @ 2.5Gb/s through OECB

45 degree Optical Reflection Mirror

Parameter	Symbol	Min.	Typ.	Max.	Unit
Data Rate/ Channel			2.5		Gb/s
Wavelength	λ	830		860	nm
W.G. Channels			12		Number
W.G. Loss	Average		0.53		dB/cm
Extinction ratio	r _e	7			dB
Jitter				50	ps
Cross Talk			-	25	dB

C2C OI through Embedded OECB

≻The propagation loss of 6cm-long OECB is evaluated below 10dB.

>Eye diagram is also tested compliant with the requirement of OC-48 eye mask.

Flexible Optical Interconnects w/ SiOB

Structure for Mobile Phone Application

VCSEL Array

Passive Integration SiOB

4X2.5Gbps光連接模組雛型

Tx and Rx Eye Diagram @ 2.5Gb/s

ITRI's Silicon Photonics Target

On-Chip Silicon Photonics

1.Hybrid evanescent coupling design.

2. Atomic bonding technology.

3. Fiber and nanowire coupling

4.Poly silicon annealing for low optical loss and high mobility.

- Optics must be one major substitution for traditional copper path at high frequency operation in the near future(2010~).
- Photonics Devices using silicon base material and standard, high volume silicon manufacturing techniques that will bring volume economics to optical interconnects.
- Flexible opt-electronics circuit boards have the advantages of high speed, immune to EMI and flexibility for assembly, it will be a potential innovation technique for future small-sized portable consumer products.
- Some prototypes of flexible OECBs have been demonstrated and deployed for consumer electronics such as mobile phone in Japan and Korea, but the power consumption of optical devices and O/E IC, cost are still important issues for implementation