Cross-Layer Networking Protocol Design for Ubiquitous Home Service

-- Hierarchical Cross-Layer Fuzzy Control

Chao-Lieh Chen (陳朝烈)¹ Yau-Hwang Kuo (郭耀煌)² ¹Dept. Electronics Eng. Kun-Shan University

²Dept. Comp. Sci. & Info. Eng. National Cheng-Kung University

成功大學

Outline

- Introduction
 - Property of "U" Networks
 - Solution: HCLFC! Why HCLC?
- Hierarchical Cross-Layer Fuzzy Control (HCLFC)
 - System Architecture
- Case Studies
 - IEEE 802.11e WLAN & MANET
 - WiMAX Guaranteed QoS scheduling and Fair Resource Allocation
 - Generic PHY-APP cross-layer
- Implementation in SoC/Embedded Systems
- Conclusion and Future work

Introduction

- Ubiquitous Home/Residential Networks
 - Ad hoc, mobile, wireless, with lots of scenarios and uncertain dynamics
 - No exact model !!
- What's problem of present cross-layer designs?
 - Mobile environment needs adaptive systems
 - Uncertainty and conflictions lead to failure of optimization steps

Introduction

- Hierarchical cross-layer fuzzy control (HCLFC)
 - Fuzzy control adapts system to mobile environment
 - Hierarchical cross-layering reduces time complexity
 - Fuzzy decision making deal with uncertainty and conflictions

HCLFC Architecture

- Individual Controller IC
 - Accomplish fuzzy control
 - Adopt fuzzy individual decision making
- Aggregate Controller AC
 - Adopt fuzzy multistage decision making
 - Resolve conflictions among ICs

- Complexity
 - •Use (I+m+n) to tackle lxmxn
 - Hierarchical Fuzzy Control
 - •Simple rule base at each layer

Case Study 1 -- IEEE 802.11e MANET

NCKU

Cross-layering of HCLFC Layer Controllers

Application SVC: Variable TSPEC

Transport:

Shaper of intermediate ad hoc links

∀ IC, the fuzzy control is only partially known:

$$u = -1, -a < \dot{\xi}_1 < \dot{\xi}_2 < -b < 0$$

$$u = 0, \dot{\xi}_1 = \dot{\xi}_2 = 0$$

$$u = 1, 0 < b < \dot{\xi}_1 < \dot{\xi}_2 < a$$

Simulation

	MPEG4 Video	Background
Transport protocol	UDP	UCP
Routing protocol	AODV/DSDV	AODV/DSDV
Access Category	2	0
CWmin	HCLFC control	31
CWmax	1023	1023
AIFS	2	3
MPDU	< 1028 bytes	1500 bytes
Sending rate	Max 960 kb/s	300 kb/s
Max allowable delay	< 96 ms	best effort
Codec/video sender	EvalVid [9][10]	
GoP	CIF 30 fps I, P, B	
MPEG parameter file	Ver. 906	

MPEG 4, max 960kbps

Fairness and Average PSNRs of MPEG-4 Streams

```
Case 0: Average PSNR (dB) – Only one MPEG-4 stream without any background traffic.
                               EDCA 0 \rightarrow 1 = 36.5 (ideal streaming performance)
Case 1: Average PSNR (dB) -- single MPEG-4 stream 0 \rightarrow 1 with background traffics: 0 \rightarrow 1, 2 \rightarrow 3,
     4 \rightarrow 5, 6 \rightarrow 7, 14 \rightarrow 15
DCF 0 \rightarrow 1 = 20.6
EDCA 0 \rightarrow 1 = 29.0
EDCA 0 \rightarrow 1 = 36.47 (FC) (\mu_{bk}, \sigma_{bk}) = (1051, 140)
Case 2: Average PSNR (dB) -- Two co-existent MPEG-4 streams 0 \rightarrow 1 and 14 \rightarrow 15 with
     background traffics: 2 \rightarrow 3, 4 \rightarrow 5, 6 \rightarrow 7, 8 \rightarrow 9, 14 \rightarrow 15
                                                                                               Even help non-
DCF 0 \rightarrow 1
                    = 24.6
                                                                DCF 0 \rightarrow 1
                                                                                   =26.0
                                                               EDCA 14→15= 36.1 (FC
EDCA 14 \rightarrow 15 = 27.7
(\mu_{bk}, \sigma_{bk}) = (641, 116)
                                                               (\mu_{bk}, \sigma_{bk}) = (632, 132)
Case 3: Average PSNR (dB) -- Two co-existent MPEG-4 streams 0 \rightarrow 1 and 14 \rightarrow 15 with
     background traffics: 0 \rightarrow 1, 2 \rightarrow 3, 4 \rightarrow 5, 6 \rightarrow 7, 14 \rightarrow 15
EDCA 0 \rightarrow 1 =
                                      EDCA 0 \rightarrow 1 =
                                                                                     EDCA 0 \rightarrow 1 =
                                                                 saturated
                                      36.5 (FC)
27.3
                                                                                     36.1 (FC)
EDCA 14 \rightarrow 15 = 31.2
                                      EDCA 14 \rightarrow 15 = 27.2
                                                                                     EDCA 14 \rightarrow 15 = 35.6 (FC)
(\mu_{bk}, \sigma_{bk}) = (584, 118)
                                      (\mu_{bk}, \sigma_{bk}) = (533, 123)
                                                                                     (\mu_{bk}, \sigma_{bk}) = (545, 163)
```

What WLAN MANET Merits from HCLFC

- Adaptive to uncertain dynamics
 - Upper layers control variable fuzzy consequences of MAC layer fuzzy control
 - Support dynamic TSPEC for network dynamics and uncertainty
- QoS Guarantee and Fairness
 - Not only "Same priority = same throughput" (most articles), but also:
 - HCLFC helps non-HCLFC (actively helps)
 - Low priority flows: Little sacrificed (better resource utilization)
- Low Complexity, Hi-Flexibility, Hi-Scalability

Case Study 2 – WiMAX OFDMA Systems

- **♣** GQFR --
 - Guaranteed QoS Scheduling
 - Fair Resource Allocation
- HCLFC control
 - Application-Transport-MAC-PHY
- Low implementation complexity
- Flexibility
- Scalability

Resource allocation

- Why not use optimization theory? Why not utility-based?
 - Advantage
 - Maximize system throughput
 - Disadvantage
 - High computing complexity
 - Limited capacity of MAP message
 - Exact objective function and constraints are impossible
- Why not priority-based method?
 - Advantage
 - Low computing complexity
 - Disadvantage
 - Not real QoS guarantees since not about jitter
 - No fairness

Service Classes in WiMAX

- Unsolicited Grant Service (UGS)
 - Maximum Latency
 - Tolerated Jitter
- Real-time Polling Service (rtPS)
 - Maximum Latency
 - Tolerated Jitter (extended rtPS)
- Non-real-time Polling Service (nrtPS)
 - Minimum Reserved Traffic Rate
- Best Effort (BE)

GQFR Concept

$$CID = 1, P_1 = 4, TXOP_1 = 1$$

$$CID = 2, P_2 = 2, TXOP_2 = 1$$

$$CID = 3, P_3 = 3, TXOP_3 = 1$$

$$CID = 4$$
, $P_4 = 1$, $TXOP_4 = 2$

OFDMA symbol

Downlink Subframe

Goal delay / from upper layer

Kun Shan University

HCLFC Design for rtPS

- Multimedia coding (e.g. SVC) control at application layer
- Goal delay controller at transport layer
- Priority controller at MAC layer
- TXOP controller at MAC layer
- Modulation control at PHY layer

HCLFC Design for nrtPS

- Priority controller
- TXOP controller

Simulations

Scenario 1: 8 connections in 1Mbps, 10 connections in 500 kbps, and 2 connections in 250kbps. (rtPS only)

Check: The guarantees of maximum latency, tolerated jitter, loss rate, and fair resource allocation for rtPS connections

Scenario 2: 2 real-time connections in 1Mbps, 8 real-time connections in 500 kbps, 5 nrtPS connections in 1Mbps, and 5 nrtPS connections in 500 kbps. (rtPS+nrtPS)

Check: the guarantees of minimum reserved rate and fair resource allocation for nrtPS connections

Scenario 3:

Kun Shan University

1 real-time connection in 1Mbps, 9 real-time connections in 500 kbps, 3 nrtPS connections in 750 kbps, 2 nrtPS connections in 500 kbps, 5 nrtPS connections in 1Mbps and 10 BE connections in 100 kbps. (rtPS+nrtPS+BE)

Check: fairness to low priority connections

Parameter	Value	
System bandwidth	10MHz	
Frame duration	5ms	
OFDM FFT	1024	
Number of subchannel	30	17
Numner of OFDM symbol for DL	28	

Simulation Results

Real-time connections in priority-only scheduling methods.

Real-time connections in GQFR.

Scenario 1: (rtPS only) the guarantees of maximum latency, tolerated jitter, loss rate, and fair resource allocation

Simulation Results

Real-time connections in priority-only scheduling method.

Real-time connections in GQFR.

Scenario 2: (rtPS+nrtPS) the guarantees of minimum reserved rate and fair resource allocation

Simulation Results

Real-time connections in priority-only scheduling method

Real-time connections in GQFR.

Scenario 3: . (rtPS+nrtPS+BE) fair resource allocation NCKU

Case Study 3 -- Generic PHY-APP Cross-Layer Control

REQUIRED	Application	PHY Layer
PARAMETER	Layer	TITI Layer
Symbol	IC_{APP}	IC_{PHY}
Objective	PER	Throughput
Goal value	< 0.1 + 0.01	→ 4
Tolerated bound	0.01	0.1
Control parameter	Packet length	Modulation
Control actions	{*1/2, *1, *2}	{Lower, Same,
		Higher}

PARAMETER	Value
Goal Throughput	4 (∞)
Tolerated bound of goal loss	0.1
Initial modulation	QPSK
Worst modulation	BPSK
Best modulation	16QAM

PARAMETER	Value
Loss rate	<0.1
Tolerated bound of loss	0.01
Initial packet length	500 (Bytes)
Maximum packet length	1536 (Bytes)
Minimum packet length	26 (Bytes)
Total packet amount	4000
A 4.7	

Aggregate

Simulations Results

Two layers control wi/wo AC₁

Implementation in SoC/Embedded Systems

Electronic System Level (ESL) Verification

Conclusion

- + HCLFC is a generic solution to ubiquitous networks
- + HCLFC is a paradigm of cross-layer networking protocol design
- **4** HCLFC features
 - Scalability
 - Low complexity
 - QoS guarantee
 - Fairness
 - Cognizance of uncertain dynamics

Future Work

- Higher-type and higher-level fuzzy sets to accommodate more general situations.
 - Cross Heterogeneous networks
- Multi-dimensional control for multi-objective at the same layer
 - We already have individual controllers for energy, security, and reliability purposes
 - Aggregating all the objectives is the focus of crosslayer design if using HCLFC.

