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What i1s a Wireless Sensor Network?

@ A wireless sensor network (WSN) is composed of a
large number of low-cost sensor nodes randomly
deployed to monitor the field of interest

@ Sensor nodes

+ Limited in energy, computation, and storage

¢ Sense/monitor their local environment

+ Perform limited data processing

+ Communicate untethered over short distances

@ Sink

¢ Gather data from sensor nodes and connect the WSN to the
outside world
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Wireless Sensor Networks

@ Applications
+ Physical security for military operations
¢ Indoor/outdoor environmental monitoring
+ Seismic and structural monitoring
¢ Industrial automation
+ Bio-medical applications
+ Health and wellness monitoring
+ Inventory location awareness
+ Future consumer applications, e.g., smart homes
...

4/55



A Sample Wireless Sensor Network
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Security Requirements

Message
confidentiality

Message authenticity
& Integrity

An attacker at (20,18)‘ O OAn attacker at (20’18)‘>l<

Node mutual
authentication

@ H((>O
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Research Challenges

@ Shared wireless channel
+ Faclilitate message eavesdropping & injection

@ Resource constraints of sensor nodes

+ Battery, memory, computation, communication ...

@ Very large network scale (n*100 or n*1000)
¢ Impossible to monitor each individual node
+ Nodes are subject to attacks such as captures

@ Vulnerable protocol design
+ Security Is often overlooked
= T
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#1 Neighbor-to-Neighbor Authentication

@ Two neighboring nodes verify that the other
party is who it claims to be

¢ Chan et al. (SP’03)

@ Ot

\ 4
\ 4

nerwise, attackers can
nject false data reports via good nodes

Distribute wrong routing information

¢ Impersonate good nodes to misbehave

“Show me why you are B"
A O OB
“Show me why you are A’
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#2 Key Agreement

@ Two neighboring nodes establish a shared
secret key known only to themselves

¢ Eschenauer and Gligor (CCS’03), Chan et al.
(SP’03), Liu and Ning (CCS’03), ...

@ The shared key Is a prerequisite for
+ Message encryption/decryption
+ Message authentication

:OB
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#3 Sybil Attack

@ A malicious node claims multiple identities

o Severely interrupt routing, fair resource allocation,
distributed storage, misbehavior detection ...

o Douceur (IPTPS’02), Newsome et al. (IPSN’04)
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#4 Node Duplication Attack

@ The attacker put clones of a captured node at
random or strategic locations in the network

o Parno et al. (SP’05) O @
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#5 Random Walk Attack

@ The attacker uses secret information of a
captured node to roam in the network
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#6 Wormhole Attack

@ Attackers tunnel packets received at one
location to another distant network location

¢ Hu et al. (INFOCOM’03), Karlof et al. (SNPA’03)

@ Allowing the attacker to
+ Disrupt routing, selectively drop packets, ...

AO» O O O O O B
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#7 Data Injection Attack

@ The attacker continuously injects bogus data
Into the network via a captured node

o Ye et al. INFOCOM’04), Zhu et al. (SP'04)

@ Allowing the attacker to
+ Deplete scarce energy of sensor nodes
+ Cause network congestion & false alarms

A Bogus data

sink
G5



Drawbacks of Prior Solutions

@ Many separate solutions exist, but

¢ Difficult to combine due to different or even
conflicting underlying assumptions

¢ Even if possible, far too complex a solution stack

+ Most prior solutions do not work when a small
number of nodes are captured by attackers
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Motivation

@ Almost all WSN applications are location-
dependent and require sensor nodes to know
their own locations

¢ E.g., military sensing and tracking
@ Sensor nodes are stationary once deployed
+ Can be identified by their IDs plus locations

@ Sensor nodes have a limited comm. range

+ Can only directly communicate with others inside
their communication range
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Notation

ID,: node A's ID
L, : node A's physical location
q: alarge prime (=160 bits)
G,, G,: two cyclic groups of order q
S: anetwork master secret, 1<s<qg-1
W : an arbitrary generator of G,

W o W, =sWeG,

H,: mapping inputs to non-zero elements in G,

H,: mapping inputs to fixed-length outputs, e.g., SHA-1
R: common communication range of sensor nodes
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Notation (cont’d)

f: G xG,— G, (pairing), such that, VU,V,S,T eG,,

fU+V,S+T)=f(U,S)fU,T)F(V,S)f(V,T) (bilinear)
U

va,bell q—1]

f(au,bV)=f(au,v)° =fU,bV)* = f(U,V)®... (bilinear)
f(UV)=1V,U) (symmetric)

Boneh and Franklin (CRYPTO'01), Barreto et al. (CRYPTO'02)
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Location-based Security Solution

@ Location-based authentication
+ Neighbor-to-neighbor authentication
¢ Key agreement
+ Syblil attack
+ Node duplication attack
¢ Random walk attack
+ Wormbhole attack

@ Location-based threshold-signing
+ Data injection attack
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Location-Based Keys

@ Conventional way: ID-based keys
+ Name a node merely with its ID
¢ Bind sensor nodes’ keys only to their IDs
+ Vulnerable to many attacks, e.qg., node duplication

@ Our method: location-based keys (LBKS)

+ Name a node with both its ID and location
- Grace@NJIT is more specific than Grace!

¢ Bind sensor nodes’ keys to both IDs and locations

21/55



Location-Based Keys

@ Assume a secure way to decide node locations
¢ Zhang, et al., JSAC’'06

@ NocC

e A's LBKs:

Public key: ID,@L,

Private key: K, =sH,(ID,@L,) G,

¢ Given (ID,@L,, K,), it is infeasible to derive s, as

th

@ Eac
and

e Discrete Logarithm Problem is hard in G;,.

h node only knows its unique LBK palr,
has no knowledge of s
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Neighbor-to-Neighbor Authentication

@ Purpose

¢ Discover and perform mutual authentication with
neighboring sensor nodes

@ Criteria

+ Check if the candidate is within the comm. range
and has the correct location-based private key
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Neighbor-to-Neighbor Authentication

Node A K, =sH,(ID,@L,) Node B: K; =sH, (1D, @L;)

IDA@ LA’ nA \
broadcast

7L, - L <R
k.o = f(Kg, H,(ID,@L,))

1D, @Lg.ng. H,(n, lIng lI1]lK »)
unicast

?|La-Ls[<R
kA,B — f(KA1 Hl(IDB @ LB))
7H,(n, Ing 121Ky g) = Hy (0, lIng l1111Kg )

H,(n,lIngll 211k, 5) -
unicast
?HZ(nA | Ng 2] kB,A) = Hz(nA f Ng 12] kA,B)
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Neighbor-to-Neighbor Authentication

Node A: K, =sH,(ID,@L,) NodeB: K, =sH,(ID; @L;)
kA,B =T (K, H,(1D; @ L)) kB,A =T (K, H,(ID,@L,))

kA,B = 1 (K,, H,(ID; @ L))
= f(SHl(IDA@LA)’Hl(IDB@ LB))
= f(H,(ID,@L,),sH,(ID; @L;)) —— f is bilinear
=1(H,(ID,@L,). K;)
= f(K;,H,(ID,@L,)) —> f Is symmetric

— kB,A

?H, (N, [Ing 11111k, 5) = Ho (N4 lIng [111Kg )
?HZ(HA ||nB ||2 ||kB,A) = Hz(nA ”nB ”2 ” kA,B)
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Resilience to Sybil Attack
iD
I am ID,,@L,,"

‘l am ID@L¢7L "l am ID,@L,"
A

E OX X0 B

“l am ID,@L,"
Sc

@ The captured node doesn’t have the correct location-
based private keys of the nodes it claims to be

@ Comparison to Newsome et al. (IPSN’'04)
¢ Our solution has much higher network scalability
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Resilience to Node Duplication Attack

X0 B
” LB o LA ”> R

@ A duplicate will be detected if talking to good nodes
outside the communication range of node A

@ The impact range of a captured node Is reduced from
the whole network to a small circle of radius <R

@ Comparison to Parno et al. (SP’05)

¢ Our solution 1s much more efficient in both communication

and computation
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Resilience to Random Walk Attack
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@ The impact range of a capture node is reduced from
the whole network to a small circle of radius < R
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Resilience to Wormhole Attack

Ky=sH,(ID,@L,)

0000000000000000000000000000000000000000000000

Wormhole link

@ The wormhole attack is completely defeated

@ Comparison to Hu et al. (INFOCOM’03)

+ Our solution has no stringent requirement on sensor

hardware and time synchronization
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Comparison to Prior Solutions

Our scheme

Eschenauer'02, Chan’03, Du’03, Liu’'03 ...

Key agreement

Deterministic

Probabilistic

Neighborhood

authentication Yes No or very limited
S_upport for digital YVes N
signatures

Storage cost Low High
Network scalability | High Poor
Attack resilience High Poor
Communication :
overhead Low High
Computation .

overhead High Low
Comm. + Comput. Low High

overhead
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Location-based Security Solution

@ Location-based authentication
+ Neighbor-to-neighbor authentication
¢ Key agreement
+ Syblil attack
+ Node duplication attack
¢ Random walk attack
+ Wormbhole attack

@ Location-based threshold-signing
+ Data injection attack
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Data Injection Attack

@ The attacker continuously injects bogus data
Into the network via a captured node

o Ye et al. INFOCOM’04), Zhu et al. (SP'04)

@ Allowing the attacker to
+ Deplete scarce energy of sensor nodes
+ Cause network congestion & false alarms

A Bogus data

sink
R
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Location-based Threshold-Signing

@ Observation

+ Each point in the sensor field should be covered by
at least k sensor nodes; or each point should be
within the sensing distance r of at least k nodes

¢ The k-coverage problem (Kumar et al.,
MOBICOM’04)

@ Basic idea

+ Each data report should be co-signed by t sensing
nodes which generate it, where 1 <t < k

¢ Intermediate nodes drops data reports without
correct threshold signatures
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sH,(m [ n)

Area key of area (m,n): X,
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Secret-Sharing of Cell Keys

@ Threshold secret-sharing of X,
¢ Each node in cell (m, n) holds a share of X, ,

¢ Any t nodes can recover X, , to co-sign a data
report originating from cell (m, n)

+ Any fewer than t nodes cannot do so
Fj EGfij_ t—l
Xhn +ZH (F; Im[In)(ID}, ,@L, )} G,

Zian, where 4, = || D @

DX @l —ID. @L
ic keQ\{iy 0o T M=
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Threshold-Signing

oD
OMN-Led (O -0
B A E
DC
°ot=4

@ The attacker is simultaneously detected by nodes A,

B, C, D, all in cell (m, n)

o Nodes agree on an event report

@ A s the local group leader
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Threshold-Signing (cont’d)

Node A Node B or C orD

Select a random integer o
O=fT(W,W)*
broadcast

UE =XB H,(report||0)
) Unicast
Um,n :/’i'AUr':,n +ZBUr§,n +/1CUr(ri,n +ﬂ'DUr|r:1),n + OlVV
=(ApXmn + A5 X + A X + Ao X o )H, (report || 0) + aW
=X nnHy(report|| 8) + oW

Send <report,U_ , H,(report| 8) > to the sink

m,n?

37/55



En-route Filtering of Bogus Reports

@ Each intermediate node:

1. Deduce (m,n) from <report,U

2. Compute 0'= f (U

wn Hy(report| 6) >
W)t (H, (m| n),_Wpub)Hz(reportne)

] H,(report||8) = H, (report||#') = the report is authentic
| H,(report||8) = H, (report||#') = the report is bogus
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En-route Filtering of Bogus Data

Q'=f (Um’n W) f(H,(m]| n)’_Wpub)Hz(reportlle)
= f (X, ,H,(report | 8) + oW W) f (H, (m || n),sw)"trepertie)
= f (X, ,H,(report | 8)+ aW W) f (sH,(m || n),w )~ "trepertie)
= f (X, ,H,(report| 8),W) f W, W)* f (X, ,, W) "lerertie)
= £(X,,,, W) £ W W) f (X

= T(W,W)~
=0

m,n?

W )— H, (report||@)

m,n?
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Probabilistic En-route Filtering

@ Should a node always verify the report?
¢ If the report Is bogus - save energy
¢ Ifthe reportisreal - waste energy

@ Solution: probabilistic en-route filtering
+ Each node verify a report with probability p,
¢ The sink always performs the verification

o On average, a bogus report passes

;:ijf (1- pf)j_l =1/p; hops
j=1
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Optimal Filtering Probability

L : original packet length (bytes)
L : packet overhead of our scheme (bytes)
E._: energy consumed to transmit & receive one byte

tr *

E, : energy consumed by a pairing operation

S . average hops a real report travels towards the sink
o . ratio of bogus data traffic to real data traffic
P, : en-route filtering probability

The normalized energy consumption of our scheme is
minimize E_,, = (L, + L,)E, (8 + pu) + (Bp; + p)E,

=(L, + L)E (B+p)+(BP; +P)E,

> (L, + L,)E, B+ pE, +2,/(L, + L,)E, pfE,

(L, +L)Ewp

with equality Iff p, =\/ JE,

41/55



Security Analysis
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@ To inject bogus reports seeming to originate from cell (m,
n), attackers must capture = t nodes there

@ Attackers cannot use a compromised cell key to fake
reports seeming to originate from other cells

@ Comparison to Ye et al. INFOCOM’04), Zhu et al. (SP’04)

+ In both schemes, attackers can fake reports from any network place after

capturing any t nodes in the whole network 42/55



Energy-Saving Performance

Normalized energy consumption (J)
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Conclusion & Future Work

@ Proposed a location-based unified solution to

+ Neighbor2Neighbor authentication, key agreement,
Sybil attack, node duplication attack, random walk
attack, wormhole attack, data injection attack

@ Plan to explore the applications of LBKs to
¢ Intrusion detection
+ Secure distributed storage
# Secure routing
# Secure target tracking
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