
Berkeley-DB for
Text/Multimedia Retrieval

Chun Jin
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

Motivation

Recent advance in text/multimedia
retrieval: good algorithms
Scalability issue

Continuous data growth
Adding new search features

Try: separating the scalability problem
from the retrieval algorithms?

Our Goal

Providing a library for
application/system building based on
Berkeley DB.
System prototyping.

Text Retrieval

Vector Space Model (VSM) for Text:
D = {t1, t2, …, tm}
Q = {t1, t2, …, tm}
Sim(D, Q) = cos(D, Q)

To Scale: Inverted Index:

DID TF POS1 POS2 …

t1 ->
.
.
t2 ->
.

. . .

. . .

Image Retrieval
Feature Space

M = {f1, f2, …, fm}
Q = {f1, f2, …, fm}
Distance(M, Q) = ||M - Q||

To Scale: Quantization then Index:
f1

->
.
.
fl

->
.

. . .

MID flm . . .

|flQ

–flm

| < δ

Retrieval Algorithm
Get feature entries
Compute feature-level similarities
Compute document-query similarities

DID TF

.

.
t1 ->
.
.
t2 ->
.

. . .

. . .

Q = {TFt1

, TFt2

, …, TFtm

}

?

?

Retrieval Algorithm
Get feature entries: Berkeley DB:

BTree/Hash indexing
Storage/buffer management

Compute feature-level similarities
Compute document-query similarities: Join:

AND/OR (Inner/Outer)
Join methods
Callback to compute Step 2

t1 ->
.
.
t2 ->

. . .

. . .

System Architecture

Preprocessor

Inverted
Indexer

Key Indexer
Storage Manager

Berkeley DB:

Inverted
Index

Search
Engine

Similarity
Calculator

Data

Query

Results

Development Layers

Retrieval Application:
Feature Extraction
Similarity Measures

Retrieval API:
Join Methods
Iterator
Inverted Index Formatter

Berkeley DB API:
Key Indexer Lib (BTree/Hash, etc.)
Storage Management

Berkeley DB vs. General DBMS:

Indexing techniques
Storage management
Operation: Join
Developer’s API
SQL
Transaction management
Recovery management

Task BDB DBMS

√ √ √

√ √ √

√ √

√ √

X √

X √

X √

Merge Join
List MergeJoin(List left, List right, Feature Qrfeature)

while (not left.end()

and not right.end())
lpair

= left.current;

rpair

= right.current;
if lpair.key

= rpair.key

FeatureSim

v = Qrfeature.Sim(rpair.data);
lpair.data

= DocSim(lpair.data, v);

left = left.next();
right = right.next();

else if lpair.key

< rpair.key
left = left.next();

else
right = right.next()

return left;

Basic algorithm adopted from Wikipedia

Feature sim

Doc sim

Information Encapsulation

BDB: index key and entry boundary
Iterator: sub-entry boundary
Join: docID key and the rest of data
Similarity function: data structure

t1 ->

Flexibility

Feature similarity:
Term positions for proximity search
Weighted link information
Meta data adjustment

Document-Query similarity:
Cosine
Euclidean
Probabilistic

Ongoing Work

Inverted Index Structure Design
Implementing join methods and
iterators
Inverted Indexer
Similarity functions and feature
extraction

Related Work
Commercial Systems:

Google
Endeca
Oracle Text DB/Multimedia DB
IBM Net Search Extender
Thunderstone Texis
YouTube

Research
CMU
Stanford [Su & Widom IDEAS05]

Conclusion

Problem:
Scalability issue on text/multimedia retrieval.

Idea:
Separating the problem from retrieval algorithms.
Layered architecture.

Goal:
Providing a library for application/system building.
Prototyping.

Acknowledgements

Thanks to Minglong Shao (CMU) and
Zhu Liu (AT&T) for helpful discussions.
Thanks to Jaime Carbonell (CMU) for
his continuous support and
encouragement.

	Berkeley-DB for Text/Multimedia Retrieval
	Motivation
	Our Goal
	Text Retrieval
	Image Retrieval
	Retrieval Algorithm
	Retrieval Algorithm
	System Architecture
	Development Layers
	Berkeley DB vs. General DBMS:
	Merge Join
	Information Encapsulation
	Flexibility
	Ongoing Work
	Related Work
	Conclusion
	Acknowledgements

