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State of Polarization

The polarization state of a wave describes how the electrical field oscillates.
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Birefringence —1st-order PMD

Time domain manifestation
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Random Birefringence in Fibers—All-Order PMD

Concatenation of random birefringent sections
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Principal States of Polarization (PSP)

Two special polarization states at the fiber input:
Output pulse is not distorted to 1st-order

— Slow PSP : | p);delay =1 +; At

— Fast PSP: | p_);delay =1 —;Ar

Differential group delay (DGD): DGD = At

PMD vector: T = Atp

In Out
_m_,

6 C. Xie, WOCC’2005 Lucent Technologies Proprietary, Use pursuant to company instruction

AT



PMD Drift and Variation
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DGD has Maxwellian distribution
H. Kogelnik et. al., OFC’02, WD

M. Karlsson et. al., JLT, vol 18, p. 941, 2000

 PMD varies with wavelength and drifts with time
- Drift speed was observed to have a large range
* Hours and days for buried fibers and undersea cables

* millisecond or faster for aerial fibers and fibers under bridges
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PMD Induced Eye-Diagram Degradation

PMD induced pulse splitting and broadening causes ISI, which
will degrade system performance.

RZ

~ NRZ

Eye-diagram degradation of 10 Gb/s RZ and NRZ signals caused
by 1st —order PMD in worst case
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System Penalty due to 1st-order PMD

For penalty less than 2 dB, 1st-order PMD can be approximated as
e (dB)~ A (At/ 2T) 2 sin? ® (c. p. Poole et al., IEEE PTL., vol. 3, p. 68,1991.)
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1x10™ Receiver Penalty (dB)

XOO e«

NRZ DGD 30 ps
NRZ DGD 40 ps
NRZ DGD 50 ps
RZ DGD 40 ps
RZ DGD 50 ps
RZ DGD 60 ps

10 Gb/s _
Optically Preamplified Rx

0.5 1.0

Fraction of Power in Leading Pulse (y)

C.H.Kim et al, OFC 2002, Tul4
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Outage Probabilities Induced by PMD

 For any given system margin , there is a certain probability
that the PMD induced penalty exceeds the margin, the
probability is called outage probability

d Acceptable outage probabilities range between 104 to 103

4000 r
4000
3500} > 3000
3000} S 2000
0]
LL
_ 2500l 1000
[&]
3 % 5 10 15
qg; 2000 DGD (ps) '
W 1500} BER = 1072
1000 —
Outages
500F

0 L
18 -16 14 12 -10 -8
Log10 (BER)

11 C. Xie, WOCC’2005 Lucent Technologies Proprietary, Use pursuant to company instruction



12

= PMD basics
= PMD impairments

= Passive PMD mitigation techniques

— Refer to the techniques that do not require dynamic
adjustment

= Electrical equalization for PMD mitigation
= Optical PMD compensation

= Multi-channel PMDC for WDM systems
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Using PMD Robust Modulation Formats
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Allocating More Margin to PMD
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OSNR penalty at BER = 1.0E-12
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Using FEC and Polarization Scrambling
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Electrical Equalizers for PMD Compensation

Electrical equalization advantages
U Low cost
O Small size

O Simultaneous mitigation of various ISl independent of its origin

but not so effective due to...

[0 Lack of polarization information after detection
[J Non-linear channel model

[0 Signal dependent noise

[0 High-speed signal processing

Well-known concepts:

» Transversal filter (FFE)

» Decision feed-back loop (DFE)

» Maximum Likelihood Sequence Estimation (MLSE)
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Structure of Electrical Equalizer
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Adaptation based on conditional error counters from FEC decoder

A. Dittrich et al, OFC’03, paper ThGS
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Effectiveness of FFE and DFE

PMD penalty for an optically pre-amplified 10 Gb/s receiver with
1-tap DFE and 8-tap FFE (transversal filter)

More effective in high penalty range

244 O without equaliser
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H. Biilow et al., Electron. Lett., vol. 36, p. 163, 2000.
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Electrical Equalizer @ 40Gb/s

Fig.1 5 Tap Transverzal Filter-based Equalizer

- 4(8) tap feed forward / T/2-spaced analog equalizer
- No absolute Q value given

- Increases DGD tolerance from 8ps to 12ps

(likely for optical duobinary)

H. Jiang et al, OFC’05, paper OWO2.
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Concept of Optical PMDC

The aim of optical PMDC is to construct a PMD vector that is
opposite to the PMD vector of the link

Due to existence of higher order PMD, this cannot be achieved
over a wide bandwidth

In principle, more stage PMDC can achieve better performance

Q, Q.
Tx || Transmissio | | oune | o
n Link

PMD profile of transmission span (solid)
and perfect optical PMDC (dashed, dotted)

R. Noé et al., JLT, vol. 17, p. 1602, 1999.
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Structure of Optical PMDC

O 9.0 .. m e .
PC delay line PC delay line PC dela@

DSP and Control algorithm Feedback signal generator

sCompensation elements

— one or many stages, fixed or variable delay lines
= Feedback signals

— DOP, RF spectrum, eye-monitoring, Q factor

Summary see: J. Poirrier et al, OFC’02, WI3, C. Xie et al, IEEE PTL, vol. 17, p. 570, 2005.
= Control algorithms

—Dithering method, or more efficient searching methods
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Outage Probability

Performance of One-Stage Optical PMDC
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* C. Xie et al, IEEE PTL, vol. 15, p.1228, 2003.
* C. Xie et al, IEEE PTL, vol. 15, p.1168, 2003
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Effects of Feedback Signals on PMDC
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= PMD basics

= PMD impairments

= Passive PMD mitigation techniques

= Electrical equalization for PMD mitigation

= Optical PMD compensation

= Multi-channel PMDC for WDM systems

— To reduce system cost
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Channel Switching to Mitigate PMD Effects
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Multi-Channel PMDC

WDM-PMD COMPENSATION MODULE
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Multi-channel Shared PMDC for WDM Systems
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Terapulse Multi-Channel PMDC
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PMD Limited Distances for 40 Gb/s Systems
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Assume component PMD of 0.5 ps per 100 km span.

The values in the figure are average tolerable PMD
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Summary

32

d Due to its stochastic nature, PMD is considered to be one

of the main obstacles to the deployment of optical
communication systems with bit rates of 40 Gb/s and
higher.

Many PMD mitigation techniques have been developed
and demonstrated in the past decade, some of them can
significantly increase the system tolerance to PMD.

Finding cost effective PMDC solutions requires deep
understanding of PMD and customer needs.

Currently no PMD compensation technique can eliminate
PMD effects. In systems with large PMD, signal

regeneration has to be used or the high PMD fibers have
to be replaced with low PMD fibers (such as spun fibers).
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