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Preliminary (1)
For n ≤m, let b1, b2, …, bn be a set of independent vectors in Rm

bi are called the basis vectors
A lattice is defined as the set of points:

{ x | x = a1b1+…+anbn }
where ai are integers
Equivalently, in matrix form:

{ x | x = Ba }
where B = [b1 … bn] and a is an integer (column) vector
The same lattice (i.e. the same set of points) can be generated by different
basis:

L = L(B1) = L(B2) iff B1 = UB2
where U is an unimodular matrix (i.e. det(U) = ±1)
The determinant of lattice L is defined as the volume of the fundamental 
parallelotope of L:

det(L) = det(L(B)) = |det(B)|
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Preliminary (2)

Gram-Schmidt Orthogonalization (GSO):
for any basis B = [b1 … bn] we can find a set of orthogonal 
vectors {bi

*} that span the space of L(B):

for i = n, n-1, …, 1
Note that:

different permutations of [b1 … bn] give you different set of {b*1 …
b*n}
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Closest Vector Problem (CVP)

Definition of the CVP:
Given a lattice L(B) and an arbitrary query 
point q in Rm, to find, among all lattice points, 
the one that is closest to q w.r.t. Euclidean 
distance
More precisely, to solve:
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CVP in Communications (1)
Many detection problems in communications can be re-
formulated as CVP.
Detection for MIMO fading channels (Viterbo’93, Viterbo-
Boutros’99, Damen et al.’2000):

assuming independent flat-fading channels, the received symbol 
vector y is given by:

y = Hx + w
where x := transmitted vector; H := channel matrix; w := AWGN
Sphere detector finds:

thus H is the lattice basis, y is the query point.
Block-based space-time decoding (Damen’2000 & many 
others) can be formulated in a similar way.
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CVP in Communications (2)
Sequence detection for ISI channels (Mow’91 & ‘94):

Sequence detector for ISI channels minimizes the metric:

where y := received seq.; G, H := Toeplitz channel matrices; ũ := 
integer-valued seq. to be detected; û := previously detected seq. 
Let q = y - Gû be the query point, H be the lattice basis

CDMA multiuser detection (Brunel et al.’98 &’2003) and 
MIMO sequence detection (Vikalo-Hassibi’2002) can be 
formulated similarly.
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Solving CVP approximately
Very efficient algorithms exist for some special 
types of lattices, e.g. cubic lattices
But in general, solving CVP is hard
Solving CVP approximately is less difficult:

Nulling & rounding/quantization (zero-forcing)
Babai’s nearest plane algorithm (DFE: successive 
nulling & cancellation)
Nearest plane algorithm with optimal ordering 
(VBLAST)

These sub-optimal detectors have much lower 
complexity than the optimal MLD.
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Solving CVP exactly

How to solve CVP exactly for optimal performance?
Solving CVP in 2 steps:
1. (lattice reduction) for a given lattice, find a “short” and 

fairly “orthogonal” basis
2. (sphere decoding) enumerate all lattice points inside a 

sphere centered at the query point
Lattice reduction can also enhance the performance 
of suboptimal schemes mentioned before
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Lattice Reduction

The definition of basis reduction is not unique:
for 2-D lattices: Gauss reduction
Minkowski reduction: the shortest possible basis
Lenstra, Lenstra & Lovász (LLL or L3) reduction

LLL reduction is very important and useful in 
practical applications (such as cryptanalysis) as 
its complexity is only polynomial time
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Lattice Reduction Algorithm (1)

The first step of the reduction algorithm is 
called size-reduction:

This operation shortens the lengths of the 
basis vectors (hence its name)
After size reduction, |µi+1,i| ≤ 0.5
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Lattice Reduction Algorithm (2)

Can we do better?
We can re-order (how?) the basis vectors 
to obtain a new set of {bi

*}
After this re-ordering, | µi+1,i | > 0.5, so 
perform the size-reduction again
Repeat until no further improvement is 
achievable
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Lattice Reduction Algorithm (3)

For LLL, swap bi and bi+1 if:

δ is a parameter:
choose small δ for faster convergence
choose large δ for better reduced basis
the basis might not be reduced and the algorithmic 
complexity is not polynomial time, if δ is chosen 
outside the specified range.
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Properties of LLL-reduced basis

Denote λ(L) as the length of the shortest 
vector in L, then (when δ = ¾):

1. ||b1|| ≤ 2(n-1)/2 λ(L)
2. ||b1|| ≤ 2(n-1)/4 det(L)1/n

3. ||b1||…||bn|| ≤ 2n(n-1)/4 det(L)
(1) & (2) ensure that the reduced-basis 
contains short vectors.
(3) ensures a “near-orthogonal” basis.
From experience these bounds are quite loose, 
i.e., the algorithm does better in practice.
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Sphere Decoding (1)

Originally developed 
by Pohst in 1981
To enumerate the 
lattice points inside a 
sphere centered at 
the query point
A lattice point is 
identified coordinate 
by coordinate.
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Sphere Decoding (2)
1. Identify the range of m-D “planes”

(i.e. lines here) bounded by the 
sphere

2. Choose one of the plane within this 
range, then project the sphere onto 
this plane

3. Identify the range of (m-1)-D “planes”
(i.e. points) bounded by this new 
lower-dimensional “sphere”, and 
choose one within the range

4. Perform the above recursively until 
eventually a lattice point is found, its 
distance to the query point can be 
calculated conveniently.

5. The radius of the sphere and the 
search ranges could be shrunk

6. Repeat until no more point can be 
found inside the sphere.
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Sphere Decoding (3)
Sphere decoding can also 
be viewed as a tree search
The radius defines a lower 
upper bounds for each 
dimension (level)
Once a leaf node (i.e. lattice 
point) is reached, the 
bounds are updated
The tree becomes smaller 
and smaller until no leaf can 
be found with the most 
current bounds.
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Sphere Decoding Complexity

The SD complexity is sensitive to :
the initial radius of the sphere
the enumeration order

Reduced basis may also lower the SD 
complexity
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Packing Radius Test
A simplification of the sphere decoder is to make 
use of the packing radius in a sufficiency test.
Already used in Mow’91 & ‘94.
A lattice point found inside the packing sphere of 
the query point must be the closest one, so the  
enumeration can be terminated immediately
The packing radius which is a property of the 
lattice, can be found in the preprocessing stage 
and it needs to be updated only when the 
channel matrix requires so. 
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BER Performance
Simulation of a 2-
transmitter 3-receiver 
MIMO system using 4-
PAM
Equivalent to solving CVP 
of 2D lattice in 6D space
LLL reduction enhances 
the performance of various 
suboptimal schemes
MLD performance was 
achieved by sphere 
decoding
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BER Performance
Simulation of a 4-
transmitter-4-receiver 
MIMO system using 64-
QAM
Again LLL reduction 
enhances the performance 
of various suboptimal 
schemes
Complex lattice based 
detectors (CLLL-ZF etc.) 
can provide the same 
performance 
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MLD Complexity Comparison
Simulation of a 4-tx 4-rx  
MIMO flat fading channel 
with 64-QAM
Time complexity is 
measured in average CPU 
time per symbol
SD-Pohst: sphere decoder 
with the original Pohst 
ordering
SE: sphere decoder with 
Schnorr-Euchner ordering
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MLD Complexity Comparison
Simulation of a 4-
transmitter-4-receiver 
MIMO system using 64-
QAM
Time complexity is 
measured by the 
complexity exponent: 
logm(average #flops)
Dotted line: sphere decoder 
without packing radius test
Solid lines: sphere decoder 
with packing radius test
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Concluding Remarks
Many communications detection problems can be re-
formulated as a CVP, so that the SD is applicable.
The first of such communications detection problems 
solved is probably the MLSD problem for ISI channels.
Lattice basis reduction is  a powerful technique for 
improving the performance of various known algorithms 
(e.g. ZF, DFE, VBLAST) at the expense of higher 
preprocessing complexity.
The packing radius test is an effective technique for 
reducing the average complexity (or power consumption) 
of MLD at the expense of higher preprocessing complexity.
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Concluding Remarks (2)
The rich lattice/communications theory guarantees that 
many lattice related ideas are still waiting for us to 
explored!
We have plenty of rooms for collaborations!!!
To probe further:

W.H. Mow, "Universal Lattice Decoding: Principle and Recent Advances", 
Wireless Communications and Mobile Computing, Special Issue on 
Coding and Its Applications in Wireless CDMA Systems, Vol.3, Issue 5, 
August 2003, pp. 553-569.
http://www.ee.ust.hk/~eewhmow

Finally, you might not know the impact of your present 
work until 10 years later!!!
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Thank You
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