
1

Lightweight Arithmetic for 
Mobile Multimedia Devices

Tsuhan Chen 陳祖翰
Carnegie Mellon University

tsuhan@cmu.edu

Thanks to Fang Fang and Rob Rutenbar

Multimedia Applications on Mobile Devices

Multimedia Processing
– More and more applications are ported from PCs to 

mobile devices
– Floating-point computational intensive

Multimedia System Development
– Media designers use 32-64bit floats in C++ for 

algorithms
– ASIC designers use 10-20bit fixed-point units for 

hardware
– Serious design disconnect



2

Multimedia Applications on Mobile Devices

Multimedia Processing
– More and more applications are ported from PCs to 

mobile devices
– Floating-point computational intensive

Multimedia System Development
– Media designers use 32-64bit floats in C++ for 

algorithms
– ASIC designers use 10-20bit fixed-point units in 

hardware
– Serious design disconnect

Fixed-Point vs. Floating-Point

Fixed point

Limited dynamic range and 
precision

Small, less power 
consumption

From SW to HW: time-
consuming and error-prone

Floating-point

Wide dynamic range & high 
precision

Big, power intensive

Easy translation from SW to 
HW

Integer fractions exp fractions

How about make this lightweight? 

Don’t use more than necessary.



3

What Does “Lightweight” Mean

exp fractions

Lightweight  === Less bits?
Actually it’s more than 

this….

FP Formats and ops
for ordinary numbers

Delicate rounding modes

……

Very small nums:denormals

IEEE Standard

We can work on each 
dimension

Better numerical features than fixed-
point

Less complicated than IEEE FP

Acceptable energy consumption

Easy to prototype algorithms with

Easy to implement into hardware

Lightweight Floating-Point Arithmetic

Lightweight FP arithmetic is a middle-ground solution

Lightweight FP

Fixed-Point Floating-Point



4

Software to Hardware Cycles

Lightweight
Arithmetic

Lightweight
Arithmetic

Media algorithms
Parameters

C++ class

Lightweight
FP Op

Lightweight
FP Op

Synthesizable
Verilog

Chip hardware

Lightweight
FP Op

Lightweight
FP Op

Design Flow Comparison

SW tuning

HW design

Pass ?

C++ FP

Fixed-point

SW simulationSW Lib

HW Lib HW design

Pass ?

C++ FP

Lightweight FP

Lightweight FP Design Fixed-Point Design



5

Design Flow Comparison

SW tuning

HW design

Pass ?

C++ FP

Fixed-point

SW simulation

HW Lib HW design

Pass ?

C++ FP

Lightweight FP

Lightweight FP Design

SW Lib

Fixed-Point Design

IEEE Standard vs. Lightweight IP

IEEE FP Standard
32 / 64 bits
– 8 / 11 bits exponent
– 23 / 52 bits mantissa
– 1 sign bit

Specs
normal numbers as well as 
special values (infinity), 
edge cases (INF - INF), etc.

Lightweight Arithmetic IP
Fewer bits
– Fewer bits of fraction

less numerical precision
– Fewer bits of exponent

less dynamic range

Which of the special 
cases/numbers should be 
supported?



6

IEEE Floats vs. CMUfloats

Customizable format providing 
variable dynamic range and precision 
Fraction [1, 23],     exponent width [1,8]

On-off switch for denormalization

Multiple choices for rounding mode
Real-rounding / Jamming / Truncation

FP Formats and ops
for ordinary numbers

Delicate rounding modes

……

Very small nums:denormals

IEEE Floats

CMUfloats

Rounding in CMUfloat

We support not only IEEE rounding, but also two “quick & 
dirty” modes

Truncation

Allowed precision b2 b1 b0

IEEE Rounding 
(Real rounding)

Allowed precision

Final, rounded result

Allowed precision b2 b1 b0

Allowed precision

kill

Achieves best results, but
requires costly hardware

What most ASIC hardware
designers do, for efficiency

Jamming

Allowed precision b2 b1 b0

Allowed precision

Simple logic,
no adders

Invented in 1940s, better
than truncate, similar HW



7

C++ CMUfloat library

Supported operators

Other supported C++ features

Cmufloat
double
float
int
short

Cmufloat

+
-
*
/

=

Pointer                Cmufloat * a; 
Reference                      Cmufloat & a ;
Array Cmufloat a[10][10] ;
Argument passing         func ( Cmufloat a ) 
I/O stream                     cout << a;

Cmufloat
double
float
int
short

==
>=, >
<=, <
!=

C++ Cmufloat Library

Supported operators

Other supported C++ features

Cmufloat
double
float
int
short

Cmufloat

+
-
*
/

=

Pointer                Cmufloat * a;
Reference                      Cmufloat & a ;
Array Cmufloat a[10][10] ;
Argument passing         func ( Cmufloat a )
I/O stream                     cout << a;

Cmufloat
double
float
int
short

==
>=, >
<=, <
!=



8

Software Library: Advantages
Transparent mechanism to embed ‘Cmufloat’ in the algorithm
– The overall structure of the source code can be preserved
– Minimal effort in translating standard FP to lightweight FP

Cmufloat <14,5> a = 0.5; // 14 bit fraction and 5 bit exponent
Cmufloat <> b= 1.5; // Default Cmufloat is IEEE float
Cmufloat <18,6> c[2]; //  Define an array 
float fa;

c[1]  = a + b;          
fa = a * b;             // Assign the result to float
c[2]  = fa + b;           // Operation between float and Cmfloat

Software Library: Advantages (Cont.)

Arithmetic operators are implemented by bit-level 
manipulation: more precise

Add( b,  c) {

a’ = b + c;

a = round (a’);

}

Built-in FP operator

Round to limited bit-width

Previous approach

Our approach: 
Emulates the hardware implementation exactly



9

Summary: Features Supported

Bit widths
– Variable from 2 bits (1 sign + 1 exp + 0 man) to 32 bits ( IEEE std) 

Rounding
– Use jamming (1.00011 rounds to 1.01)
– Experiments show jamming is nearly as good as full IEEE rounding, 

always superior to truncation, yet same complexity as truncation
Denormalized numbers
– Not supported--our experiments on video/audio codecs suggest that 

denormal numbers do not improve the performance
Exceptions
– Support only the exceptional values for infinity, zero and NAN
– Helps make the smaller FP sizes more robust

Hardware Library:  ASIC Design Flow
Verilog to layout flow
Timing & area analysis
Power analysis

LOGIC:
Synopsys

DesignCompiler

SIMULATION:
ModelSim LAYOUT:

Cadence
Silicon Ensemble

POWER:
Synopsys

DesignPower

Technology
LibraryVerilog design

Synopsys
DesignWare

+ * Mux...

Standard Cells,
Logical,
physical, and
timing views

Basic blocks:
Integer arithmetic,
multiplexors, etc



10

Lightweight FP Adders/Multipliers
Feature Supported
– Bit widths: 

Variable from 3 bits (1 sign + 1 exp + 1 frac) to 32 
bits ( IEEE std)

– Rounding: 
Jamming / Truncation

Design Issues
– Design method 
– Subcomponent structures

• Core integer adder structure?
• Core shifter structure?
• Core integer multiplier structure?

x roundround
> >1

++

nan
zero

infin ity

nan
zero

infin ity

nan
zero

infin ity

nan
zero

infin ity

over
flo w
over
flo w

un der
flow

un der
flow

_

+

all
ones

all
ones

all
zeros

all
zeros

all
ones

all
ones

all
ones

all
ones

all
zeros

all
zeros

all
zeros

all
zeros

Spe c ia l case
lo gic

Spe c ia l case
lo gic

m antissa 0

m antissa 1

exponent1

exponent0

sign0
sign1

m antissa
out

exponent
out

M u ltip licatio n N o rm a lizatio n R ou n din g

Sp ecial case detec tion

+
bia s

sign _out

-

m an tissa0

m an tissa1

exponent1

exponent0

+
sw a p 2’s

com p le m en t
2’s

com p le m en t

>> 1

2’s
com p lem e nt

2’s
com p lem e nt

< < n

Le ad ing  
zeros

d etec tio n

Le ad ing  
zeros

d etec tio n

ro un dro un d

>> n

+

_

++

n a n
ze ro

inf inity

n a n
ze ro

inf inity

na n
zero

in fin ity

na n
zero

in fin ity

o ve r
flo w
o ve r
flo w

un de r
f low

un de r
f low

s w aps w ap
_

a ll
on es

a ll
on es

a ll
zer os

a ll
zer os

a ll
on es

a ll
on es

a ll
on es

a ll
on es

a ll
zer os

a ll
zer os

a ll
zer os

a ll
zer os

S p ec ia l c ase
lo g ic

S p ec ia l c ase
lo g ic

>

s ign0
s ign1

m antissa
out

exponent
ou t

A lignm ent

A dditio n N orm a lization

R ounding

Special ca se detection

sig n-ou t
log ic

sig n-ou t
log ic

s ign_out

Blue modules have large area and / or delay 

mantissa0

mantissa1

exponent1

exponent0

+
swap 2’s

complement

>>1

2’s
complement

<<n

Leading 
zeros

detection

round

>>n

+

_

++

nan
zero

infinity

nan
zero

infinity

over
flow

under
flow

swap
_

all
ones

all
ones

all
zeros

all
zeros

Special case
logic

>

sign0
sign1

mantissa
out

exponent
out

Alignment

Addition Normalization

Rounding

Special case detection

sign-out
logic

sign_out

Floating Pt Adder



11

x
round

>>1

++

nan
zero

infinity

nan
zero

infinity

over
flow

under
flow

_

+

all
ones

all
ones

all
zeros

all
zeros

Special case
logic

mantissa0

mantissa1

exponent1

exponent0

sign0
sign1

mantissa
out

exponent
out

Multiplication Normalization Rounding

Special case detection

+
bias

sign_out

_

Floating Pt Multiplier
Blue modules have large area and / or delay

We see that the multiplier has less ‘over-head’ than the adder

32-bit Floating-point

20-bit Fixed-pt
14-bit Floating-pt

32-bit FP 20-bit FIX 14-bit FP
Area( um2) - post layout 26634 4866 10096
Delay(ns) - post synthesys 48.95 2.44 25.77

Design Examples: Adders



12

Adder Analysis

Fixed-point adder is very simple;  floating point adder is complex

aaaa.aaaa
bbbb.bbbb
0pppp.pppp

pppp.pppp

No rounding
If not 0, then

overflow

Final answer

Fixed Point
aa x 2aa

bb x 2bb

1.aa   x 2MAX(aa,bb)

0.00bb x 2MAX(aa,bb)

0.0ppp x 2MAX(aa,bb)

pp x 2pp     

Alignments
are expensive

Final answer

Floating Point

Extra add &
normalize steps

32-bit Floating-point
20-bit Fixed-point

14-bit 
Floating-pt

32-bit FP 20-bit FIX 14-bit FP

Area( um2) - post layout 60713 40738 8851
Delay(ns) - post synthesis 24.14 22.82 15.89

Design Examples: Multipliers



13

Multiplier Analysis

Fixed-pt needs more bits to get the same dynamic range, 
increasing the size of the multiplier unit

aaaa.aaaa
bbbb.bbbb

0000pppp.pppppppp

pppp.pppp

Must round
these away

If not 0, then
overflow

Final answer

Fixed Point
aa x 2aa

bb x 2bb

(aa x bb)x 2(aa+bb)

pp x 2pp     

Extra adderMuch smaller
integer multiplier

Final answer

Floating Point

Must round
& normalize

Radix-2 vs. Radix-16

Higher radix has less complexity in the shifter

More fraction width increases the complexity of multiplier
If the number of adders is much more than the number of 
multipliers, then radix-16 is preferred

Radix-2 FP ( 8-bit fraction + 1 leading bit )

Radix-16 FP ( 11-bit fraction )

Radix Area (um2) Delay (ns)

2 8401 10.21

16 7389 (-12%) 8.48 (-17%)

Radix Area (um2) Delay (ns)

2 7893 5.8

16 11284   (+43%) 6.62   
(+14%)

Adder Multiplier



14

Power Analysis

IDCT in
– 32-bit IEEE FP
– 15-bit radix-16 lightweight FP
– Fixed-point implementation

• 12-bit accuracy for constants
• Widest bit-width is 24 in the whole algorithm (not fine tuned)

Implementation Area(um2) Delay(ns) Power(mw)

IEEE FP 926810 111 1360

Lightweight FP 216236 46.75 143

Fixed-point 106598 36.11 110

Multimedia Encoding/Decoding

Playback of Media
Encoder

Encoding of Media
Video camera

Uncompressed 
multimedia file Encoded bitstream

101110010...

At the decoding end, we 
have a choice as to how 
accurately we wish to 
decode the data for 
playback

Decoder

or



15

Video Codec

H.261/263, MPEG-1/2/4, and even JPEG

+ DCT Q

IQ

IDCT

+
Motion
Comp D

IQ

+
Motion
CompD

+

–

8-bit 9-bit

8-bit

12-bit

9-bit

Transmit

Floating
point

12-bit

9-bit

8-bit

Floating
point

Floating
point

IDCT

IDCT requires floating point, 
and has an IEEE quality spec
(1180-1990) that requires 
comparison against a 64-bit 
IEEE double implementation

Video Quality vs. Bit-width

Use PSNR (Peak-Signal-to-Noise) to measure perceptual video quality

Proposed Codec
CMUfloat

Test
video

Measure
PSNR

(Noise = |Qi – Pi| ) 

31

33

35

37

39

5 7 9 11 13 15 17 19 21 235     7      9      11    13     15     17    19   21    23

CMUfloat can go very small, ~14bits 
( 5 exponent + 8 fraction + 1 sign bits = 14 total bits )

Fraction-width 
(bit)

PSNR

(dB)

Yellow pts show where 
PSNR decreases by 0.2dB 
from asymptotic value

Qi

Pi



16

Rounding Modes

Compare 3 rounding modes using IDCT video streams

Fraction-width(bit)

33

34

35

36

37

38

39

6 7 8 9 10 11 12 13 14 15 16 17

Real
Jamming

Truncation

Comparison of Rounding Methods
PSNR

(dB)

Jamming is nearly as good as 
real rounding in precision, 
but as simple as truncation in 
hardware.

Video Demo

– IEEE double vs. variable-precision CMUfloats

Decoded with 64-bit
“double” IDCT

Decoded with 14-bit
“lightweight”  IDCT

Decoded with 11-bit
“lightweight”  IDCT



17

Hardware Reduction Using Lightweight FP

Comparison in Area/Delay/Power
– 32-bit IEEE FP IDCT / 14-bit lightweight FP IDCT with Jamming 

rounding / 20-bit fixed point IDCT

0

0.2

0.4

0.6

0.8

1

1.2

Area Delay Power

IEEE FP Lightweight FP Fixed-point

Low-Resolution Display

Media software commonly done in full precision (32–64 bits) 
– Why do this if the display cannot handle it?
– On a portable video player:

Can’t we do better than this, with smarter operators?

Encoded 
bitstream

Full 
precision 
decode

Decoded Image

Display 
image on 
portable 
device

Decoded Image on 
2-bit B&W displayThis is really inefficient



18

Low-Resolution Display (cont.)

Results
– Simplest:  needs ~20-bit lightweight floats to work
– Better:  needs  16-bit lightweight floats; even just 11-bits looks decent
– Best:  needs just 9-bit floats (4 fraction bits) to work just fine.

Encoder Decoder

Decoder

Bitstream0~255

0~255

0~255

0 | 255

Decoder
0 | 255

Encoder
0 | 2550~255

Simplest (dumbest):
just encode/decode as usual, 
let the display “figure it out”

Better:
decode with just enough precision 
so a quantizer can retrieve right 
2-bit pixel values

Best:
Encode and decode with
min precision needed so
quantizer gets right pixels

quantizer

quantizerquantizer

Video Demo
Full Precision (64 bit)

Using 23 bits (IEEE 1180 passed) Using 11 bits (IEEE 1180 failed)



19

Perceptual ModelPerceptual Model

How About Audio?

MPEG-1/2 Layer 3 (MP3)

No standard tests for quality

Filter
Bank

(MDCT)

Joint Stereo
Coding

Scale&
Quantizer

Mux De
Mux

Scale&
IQuantizer

Joint Stereo
Decoding

Filter
Bank

(IMDCT)

Synthesis
IDCT

MP3 
Bitstream

.wav.wav Analysis
DCT

Use CMUfloat

Audio Quality

Need to rely on subjective testing on perceptual quality
– Mean Opinion Score (MOS)

• From 5 “imperceptible difference” to 1 “really annoying”
Results
– 8 subjects.  6-bit exponent and 3~7 bit fraction

0

1

2

3

4

5

2 3 4 5 6 7 8

# of Fraction Bits

M
O

S Music 1 (Classic)
Music 2 (Pop)



20

Conclusion 

Lighweight FP Fixed-point 

Tradeoff between the “lightweight FP” and the “fixed-point”

Numerical 
performance

Hardware cost
Design time

Exhaustive search for bit-width

Ongoing Work : Automatic Design Flow

Standard C++ FP algorithm

Bit-width optimization engine

C++ lightweight FP algorithm with 
optimal bit-width 

CMUfloat
C++ class 

FP arithmetic 
Verilog library Lightweight FP hardware design

main( ) {
double x,y;
x = 2*x + y;
…

}

main( ) {
CMUfloat x,y;
x = 2*x + y;
…

}

main( ) {
CMUfloat x,y;
x = 2*x + y;
…

}

main( ) {
CMUfloatx,y;
x = 2*x + y;
…

}



21

Recap…

Accomplishments 
– C++ lightweight FP arithmetic library
– Verilog lightweight FP arithmetic library
– Extensive experiments on video/audio/speech

Is the lightweight FP solution universal?
– No, tradeoff between fixed-point solution and lightweight FP solution

Ongoing work
– Automatic design flow

Important for low-power mobile devices

Advanced Multimedia Processing Lab

Please visit us at:
http://amp.ece.cmu.edu


