L&

Lightweight Arithmetic for
- Mobile Multimedia Devices

p-

Tsuhan Chen BE#HER
Carnegie Mellon University
I tsuhan@cmu.edu

Thanks to Fang Fang and Rob Rutenbar

4

Multimedia Applications on Mobile Devices

= Multimedia Processing

— More and more applications are ported from PCs to
mobile devices

- Floating-point computational intensive

Multimedia Applications on Mobile Devices

= Multimedia System Development

— Media designers use 32-64bit floats in C++ for
algorithms

— ASIC designers use 10-20bit fixed-point units in
hardware

- Serious design disconnect

4

Fixed-Point vs. Floating-Point

Floating-point
Ol I |

S exp fraction

Fixed point
Ol I]

S Integer fraction

v" Wide dynamic range & high
precision

% Limited dynamic range and
precision

v Small, less power

> <" x Big, power intensive
consumption

v/ Easy translation from SW to
HW

% From SW to HW: time-
consuming and error-prone

How about make this lightweight?

Don’t use more than necessary .

4

4

What Does “Lightweight” Mean

O 1 1

s exp fraction (Actually it's more than]
Lightweight =2= Lessbits — — tis..

IEEE Standard

FP Formats and ops
for ordinary numbers =

We can work on each
Very small nums:denormals — dimension

Delicate rounding modes

4

Lightweight Floating-Point Arithmetic

= Lightweight FP arithmetic is a middle-ground solution

U B oo o I IS

Fixed-Point)] Floating-Point
= Better numerical features than fixed-

point

= | ess complicated than IEEE FP

= Acceptable energy consumption
= Easy to prototype algorithms with

= Easy to implement into hardware

Software to Hardware Cycles

Media algorithms

e

Parameters

Lightweight
Arithmetic

C++ class

Chip hardware

Lightweight
FP Op

Synthesizable

Verilog
Lightweight
FP Op

Design Flow Comparison

Lightweight FP Design

Fixed-Point Design

’3""

L !

HW design

Design Flow Comparison

Lightweight FP Design

¥

Y |
z

Fixed-Point Design

o

1 |

HW design

4

IEEE Standard vs. Lightweight IP

|IEEE FP Standard

= 32/64 bits
— 8/11 bits exponent
— 23/52 bits mantissa
— 1sign bit

= Specs
normal numbers as well as
special values (infinity),
edge cases (INF - INF), etc.

Lightweight Arithmetic IP

= Fewer bits

— Fewer bits of fraction
-> less numerical precision

— Fewer bits of exponent
—> less dynamic range

= Which of the special
cases/numbers should be
supported?

IEEE Floats vs. CMUfloats

CMUfloats

= Customizable format providing
variable dynamic range and precision
Fraction [1, 23], exponent width [1,8]

IEEE Floats

FP Formats and ops
for ordinary numbers

ery small nums:denormals
Delicate rounding modes

= On-off switch for denormalization

= Multiple choices for rounding mode
Real-rounding / Jamming / Truncation

4

Rounding in CMUfloat

= We support not only IEEE rounding, but also two “quick &
dirty” modes

| Allowed precision | b2 bl b0| | Allowed precision |b2 b1l b0| | Allowed precisiof §b2 b1l b0|

!

IEEE Rounding \ kill . —u r
(Real rounding) Truncati Jammin Simple logic,

no adders
| i |
Allowed precision Allowed precisio
Final, rounded result
J J
Y Y
Achieves best results, but What most ASIC hardware Invented in 1940s, better
requires costly hardware designers do, for efficiency than truncate, similar HW

4

4

C++ CMUfloat library

= Supported operators

Cmufloat
double
float

int =
short

Cmufloat *

Cmufloat
double
float

int

short

4

C++ Cmufloat Library

= Qther supported C++ features

=Pointer
=Reference

="Array

= Argument passing
=]/O stream

Cmufloat * a;
Cmufloat & a ;
Cmufloat a[10][10] ;
func (Cmufloat a)
cout << a;

4

Software Library: Advantages

= Transparent mechanism to embed ‘Cmufloat’ in the algorithm
— The overall structure of the source code can be preserved
— Minimal effort in translating standard FP to lightweight FP

Cmufloat <14,5> a = 0.5; // 14 bit fraction and 5 bit exponent
Cmufloat <> b= 1.5; /I Default Cmufloat is IEEE float
Cmufloat <18,6> c[2]; /I Define an array

float fa;

c[1] =a+b;

fa =a*b; I/ Assign the result to float

c[2] =fa+b; // Operation between float and Cmfloat

4

Software Library: Advantages (Cont.)

= Arithmetic operators are implemented by bit-level
manipulation: more precise

Our approach:
Emulates the hardware implementation exactly

Previous approach

Add(n, [BultinFP operator
a’=b+ c;/

Y| Round to limited bit-width
a=round (a’);

R

Summary: Features Supported

Bit widths

— Variable from 2 bits (1 sign + 1 exp + 0 man) to 32 bits (IEEE std)
Rounding

— Use jamming (1.00011 rounds to 1.01)

— Experiments show jamming is nearly as good as full IEEE rounding,
always superior to truncation, yet same complexity as truncation

Denormalized numbers

— Not supported--our experiments on video/audio codecs suggest that
denormal numbers do not improve the performance

Exceptions
- Support only the exceptional values for infinity, zero and NAN
— Helps make the smaller FP sizes more robust

4

Hardware Library: ASIC Design Flow

= Verilog to layout flow
= Timing & area analysis
= Power analysis Standard Cells,

sTechnology| Logical,

Verilog design / Library | Physical, and
tlmlngVIeWS

LOGIC:
Synopsys
DesignCompiler

Basic blocks:
} Integer arithmetic,
DesignWare| multiplexors, etc

LAYOUT:
Cadence
Silicon Ensemble

POWER:
Synopsys
DesignPower

4

Lightweight FP Adders/Multipliers

= Feature Supported __
- Bitwidths:]

Variable from 3 bits (1 sign + 1 exp + 1 frac) to 32 S

bits (IEEE std)

il
i

- Rounding: :‘:“”‘I; =

Jamming / Truncation

= Design Issues
— Design method
— Subcomponent structures
+ Core integer adder structure?

+ Core shifter structure?
+ Core integer multiplier structure?

4

Floating Pt Adder

Blue modules have large area and / or delay

sin ot F======777 reSTe T T L
:-“’g'c ! Addition
> .

r . 1
signé; Allgnmentj

signll* i

1
mantissa0 17—+

swap|
mantissal —H 75
=
1
I i
1
1

exponent0 T

exponentl ||

Special
zzzzz logic

al
L zzzzz

mantissa
out

% exponent

out

10

O

Floating Pt Multiplier

Blue modules have large area and / or delay

sign0 sign_out
signl
[T-————=——-—~ T s 1m-=-=--1
I Multiplication : I Normalization :: Rounding
1 1
) 1 I| " 1
mantissa0 - hy 11 1
. 1 X + 1 1
mantissal |, 1 round 4——-—]
! : ,—@7 : : : zero—| [~mantissa
infinity—|
I— . out
exponent0 : 1 1 !
1 1 1
exponentl . 1 e
1 :)—exponent
_________________ out
) PR L A L.
Special case

logic

We see that the multiplier has less ‘over-head’ than the adder

Q©

Design Examples: Adders

32-bit Floating-point

32-bit FP 20-bit FIX 14-bit FP
Area(um?) - post layout 26634 4866 10096
Delay(ns) - post synthesys 48.95 2.44 25.77

11

Adder Analysis

Fixed-point adder is very simple; floating point adder is complex

Fixed Point Floating Point
aaaa.aaaa aa x 234
bbbb . bbbb bb x 2PP

roto. ten P PPPP - PPPP l.aa X 2&2?82 EE;
-
| N di 0.00bb x 2
overflow 0 rounding CO Oppp . ShAX(aa, bb)
Allgnments Extra add &
are expensive \ normalize steps
PPPP-pPPPP pp x 2PP
Final answer Final answer

O

Design Examples: Multipliers

32-bit Floating-point
: 20-bit Fixed-

32-bit FP 20-bit FIX 14-bit FP
Area(um?) - post layout 60713 40738 8851
Delay(ns) - post synthesis 24.14 22.82 15.89

Q©

12

4

Multiplier Analysis

Fixed-pt needs more bits to get the same dynamic range,
increasing the size of the multiplier unit

Fixed Point Floating Point
aaaa.aaaa aa x 2%&
bbbb . bbbb bb x 2bPP

0000 .
0000pppp - PPPPPPPP (aa x bb)x 2(aa+bb)
Ifnot 0, then Must round Much smaller Extra adder
overflow these away

integer multiplier Must round
\ / & normalize
PPPP - pPPP pp x 2PP

Final answer Final answer

L&

Radix-2 vs. Radix-16

= Higher radix has less complexity in the shifter
(T TTTTTTT]

Radix-2 FP (8-bit fraction + 1 leading bit)

llll‘lll‘ll‘

Radix-16 FP (11-bit fraction)

= More fraction width increases the complexity of multiplier

= |f the number of adders is much more than the number of
multipliers, then radix-16 is preferred

Radix Area (um?) Delay (ns) Radix Area (um?) Delay (ns)

2 8401 10.21 2 7893 5.8

16 7389 (-12%) 8.48 (-17%) 16 11284 (+43%) = 6.62
(+14%)

Adder Multiplier

4

= IDCTin

Power Analysis

— 32-bit IEEE FP

- 15-bit radix-16 lightweight FP

- Fixed-point implementation
+ 12-bit accuracy for constants
+ Widest bit-width is 24 in the whole algorithm (not fine tuned)

Implementation Area(um?) Delay(ns) Power(mw)
IEEE FP 926810 111 1360
Lightweight FP 216236 46.75 143
Fixed-point 106598 36.11 110

4

Multimedia Encoding/Decoding

Encoding of Media

Video camera

or

g

uUncompressed
multimedia file

y 4
Encoder 1110010...
-

Encoded bitstream

p— \
T Decoder _.ﬂ

At the decoding end, we
have a choice as to how
accurately we wish to
decode the data for
playback

Playback of Media
A—

14

» H.261/263, MPEG-1/2/4, and even JPEG

Flo
8-bit 9-bit

8-bit

point . .
+° m‘ m 2-bit gl Emit _]-Iz'blt

Video Codec

ating

Floating

Floating
point i

IDCT requires floating point,
and has an IEEE quality speq
(1180-1990) that requires

comparison against a 64-bit
|IEEE double implementation

Motion
Comp

4

8-bit

Motion
Comp

Video Quality vs. Bit-width

= Use PSNR (Peak-Signal-to-Noise) to measure perceptual video quality

Test
video

Qi
Pi

Proposed Codec :
CMUfloat (Noi

® CMUfloat can go very small, ~14bits
(5 exponent + 8 fraction + 1 sign bits = 14 total bits)

39

Yellow pts show where /
PSNR decreases by 0.2dB

- 37

- 35

- 33

31

from asymptotic value

4

Measure
PSNR
se =|Qi—-Pi|)

PSNR
(dB)

5 7 9 11 13 15 17 19 21 23Fraction-width
(bit)

15

4

Rounding Modes

= Compare 3 rounding modes using IDCT video streams

PSNR 3°

(dB

Jamming is nearly as good as
real rounding in precision,
but as simple as truncation in
hardware.

Comparison of Rounding Methods

38
—_—
37

— 7

36

35

—e— Real
Jamming | —
=s— Truncation

34 -

/

33

6 7 8 9 10 11 12 13 14 15 16 17

Fraction-width(bit)

4

Video Demo

— |EEE double vs. variable-precision CMUfloats

Decoded with 64-bit
“double” IDCT

“ightweight” IDCT

-
Decoded with 14-bit

16

Hardware Reduction Using Lightweight FP

= Comparison in Area/Delay/Power

— 32-bit IEEE FP IDCT / 14-bit lightweight FP IDCT with Jamming
rounding / 20-bit fixed point IDCT

MIEEE FP M Lightweight FP O Fixed-point
12

0.8 4

0.6 1

It

Area Delay Power

4

Low-Resolution Display

= Media software commonly done in full precision (32-64 bits)
— Why do this if the display cannot handle it?
— Onaportable video player:

Display
{Full image on
i { precision portable
i decode device
i i 1 i
Encoded Decoded Image
bitstream Decoded Image on

This is really inefficient 2-bit B&W display

= Can’t we do better than this, with smarter operators?

4

17

0~255
—_—— 4 Encoder

0~255

4

25 0] 255
T e —s] [—

Low-Resolution Display (cont.)

Simplest (dumbest):
just encode/decode as usual,
let the display “figure it out”

| decode with just enough precision
S0 a quantizer can retrieve right
2-bit pixel values

quantizer

H Best:

Encode and decode with

min precision needed so

% quantizer gets right pixels

quantizer quantizer

Results

— Simplest: needs ~20-hit lightweight floats to work

— Better: needs 16-bit lightweight floats; even just 11-bits looks decent
— Best: needs just 9-bit floats (4 fraction bits) to work just fine.

Video Demo

Full Precision (64 bit)

L
R .

m Using 23 bits (IEEE 1180 passed) m Using 11 bits (IEEE 1180 failed)

18

How About Audio?

= MPEG-1/2 Layer 3 (MP3)

MP3
: Bitstream —
way Filter ; Filter
Bank i ‘ Bank
(MDCT) ; {ivpcT) &
| ~—tA
Joint Stereo ’ i
Mu De Joint Stereo

Decoding

(I Quantizer)

Use CMUTfloat

Scale&

Quantizer

4
1 1

——————— - |

= No standard tests for quality

4

Audio Quality

= Need to rely on subjective testing on perceptual quality
— Mean Opinion Score (MOS)
+ From 5 “imperceptible difference” to 1 “really annoying”
= Results
— 8 subjects. 6-hit exponent and 3~7 hit fraction

: L
3 : [4 -

/ —e— Music 1 (Classic) -

z ¢
’/4):

1 e

—=— Music 2 (Pop)
2 3 4 5 6 7 8

of Fraction Bits

4

19

4

Conclusion

® Tradeoff between the “lightweight FP” and the “fixed-point”

= .
- - Numerical
- performance
_..

Lighweight FP

Fixed-point

4

Ongoing Work : Automatic Design Flow

Standard C++ FP algorithm -

1§

Bit-width optimization engine

main(){
CMUfloa,y;
X=2%+y;

C++ lightweight FP algorithm with I
optimal bit-width

{rFa lirar Lightweight FP hardware design %D

20

4

Recap...

Accomplishments
— C++ lightweight FP arithmetic library
— Verilog lightweight FP arithmetic library
- Extensive experiments on video/audio/speech

Is the lightweight FP solution universal?
— No, tradeoff between fixed-point solution and lightweight FP solution

Ongoing work
- Automatic design flow

Important for low-power mobile devices

4

“Advanced Multimedia Processing Lab

I/-

Please visit us at:
http://amp.ece.cmu.edu

21

