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Introduction (1)

Keywords
– Portability

• Pervasive computing
• Ubiquitous computing

– Communication capability
• Personal communication 

system
• 3G
• 4G
• WLAN, Bluetooth
• Overlay networks

– Multimedia capability
• A/V capturing
• A/V display

– Marketing
• Consumer electronics oriented
• Rather than PC-oriented

Embedded processors
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Introduction (2)

Technical Challenges
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Introduction (3)

Two-Chip Solution
– Communication chip and Multimedia chip

Embedded Media Processor Architecture

CPU

DSP

Image Co-
Processor

On-Chip Memory

CPU Image Co-
Processor

On-Chip Memory
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Introduction (4)

Example of Media Processors
– Trimedia: TM1300

• Speech/Image/Video
• Somehow, not very well received

– Equator media processor
– TI

• DSC-25, DM-270, DM-320
• OMAP for cellular phone
• C64xx series

– Sunplus, Altek, etc.
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Content

New trend of embedded hardware design
Operation profiling and speed up for multimedia 
applications
Several design problems

Power optimization
Memory bank confliction resolution
Loop unrolling
Cryptographic operations
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Comparison of Embedded Processors and 
General Purpose (GP) Processors

SuperscalarVLIWArchitecture

512 MB – 1GB8 – 256 MBMemory size

32 – 128KB(L1)
512 – 1MB (L2)

L3 cache available

16/16 KB (L1)
Usu. no L2 cache

Cache Size

2 – 4 GHz100 – 600 MHzClock Speed

GP ProcessorsEmbedded Media 
Processors
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Key Issues About Processor Design

Single-user or 
Multi-user

SizeInstruction Set 
Architecture 
+ Compiler

VLSI speed

Time-sharingSpeedMicro-architecture 
implementation

OS overheadMemory & I/OCPU
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Embedded Multimedia Application (EMA)

Embedded multimedia applications (EMAs) have 
stringent requirements
– Real-time performance
– Frequent and uniform memory access
– High computation complexity

Using multiple processors to increase performance 
and improve availability
– Single instruction stream, single data stream (SISD)
– Single instruction stream, multiple data streams (SIMD)
– Multiple instruction streams, single data stream (MISD)
– Multiple instruction streams, multiple data streams (MIMD)
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Single Instruction Multiple Data (SIMD)

Why is SIMD?
- Multimedia data’s low-precision

- 8-bit pixels for image/video application
- 16-bit samples for audio application 

Challenges: representation, storage and processing

- Multimedia algorithm’s inherit data parallelism
- Add, subtract, and simple forms of multiplication and division are 

common operations

First developed by UIUC 
– Used as imaging processing engine (CM series) in early days 

Popular engine: Intel MMX, TI iMX
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SIMD Example

DSPIADD R1, R1, R2

31                 0
+

=

R1
R2
R1

DSPUQUADADDUI R1, R1, R2

31 27   15   7   0
R1
R2
R1

+ + + +

= = = =

Add C, D
Load D
Load C
Add A, B
Load B
Load A

SIMDADD L1, L2
Pack L2, B, D
Pack L1, A, C

SISD Vs. SIMD

Cycle count is reduced by 50%
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Comparison of VLIW & Superscalar

SuperscalarVLIW

I fetch

Decode

Execute

Write-back

3-parallel executions per cycle 3-issue superscalar per cycle
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Hyper-pipeline and Superscalar

Superscalar super-
pipeline

Hyper-pipeline 
or super-pipeline

I fetch

Decode

Execute

Write-back

Super-pipeline with depth of 3

3 functional pipelines in parallel

3-issue superscalar super-pipeline
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VLIW

Advantages
– Simpler hardware cost is lower than superscalar
– Allows multiple issues per clock cycle

Disadvantages
– Purely rely on compiler for scheduling static scheduling only
– Most of the compilers are not efficient

Challenges
– Exploit ILP efficiently: find out more instructions to be executed in 

parallel
– Compatibility or flexibility: assembly codes are difficult to port
– Code size
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Content

New trend of embedded hardware design  
Operation profiling and speed up for multimedia 
applications
Several design problems

Power optimization
Memory bank confliction resolution
Loop unrolling
Cryptographic operations
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Profiling in Video Coding Operations
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Profiling in Video Coding Operations

Execution time distribution of MPEG1 decoder steps

IDCT Motion Compensation
Inverse Quantize Huffman decode
Header decode Display

1st 
Target

2nd
Target

Computational Profiling for MPEG-1 Decoder
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Speeding up 8x8 DCT

IFIR16

Performance Comparison of DCT

4.42160Optimized DCT based on Trimedia ISA
3.24472Fast DCT on pure C

Issue RateInstruction Cycle
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Speeding up Motion Estimation

Direct instruction to compute SAD
– TM1300: UMEU88
– TI DM642: SUBABS4

3.43218x8 MAD Computation with UMEU88
3.981008x8 MAD Computation on pure C

Issue RateInstruction Cycle

Performance Comparison of SAD Computation
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Speeding up Interpolation

Many media instructions can be used in interpolation (TM1300):
– QUADAVG, unsigned byte-wise quad average
– UFIR8UU, unsigned sum of products of four unsigned bytes
– UCLIPI, clip the operand into 0 to an unsigned number

4.702,795Interpolation with media instructions

1.51113,012interpolation on pure C

Issue RateInstruction Cycle
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Content

New trend of embedded hardware design  
Operation profiling and speed up for multimedia 
applications
Several design problems

Power optimization
Memory bank confliction resolution
Loop unrolling
Cryptographic operations
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Basic Principles

Activity Management
– Switch off inactive components when possible
– Reduced bus switching
– Reduce cycle counts 

Memory Management
– Reduce memory size

• Larger size or longer bit-width long transfer path / complex address 
decoding…

• More connectivity More wiring more power

– Increase locality of memory access
• Less data transfer from off-chip memories (using cache or buffer)

– Reduce memory access frequency
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Dynamic Power Management (1)

Selective shut-off or slow-down of components
– Effective way to reduce power dissipation
– Much effort in the design, debug and validation

Approaches
– “Time-out” policy

• Turn on a component when it is in use
• Turn off a component when it is not used for some pre-specified length 

time
– The parameter can be selected based on the access pattern characteristics 

of the component
• Limitations:

– Cannot handle components with more than 2 states
– Cannot handle complex system behaviors
– No optimality guaranteed
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Dynamic Power Management (2)

– Discrete-time Markov decision process
• Four-component system model
• Objective: expected performance (e.g. waiting time and no. of objects in 

the queue)
• Constraint: expected power consumption

– Continuous-time Marchov decision process
• Event-driven PM (power manager)
• Perform decision process only when necessary
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Reduced Bus Transition/Switching (1)

Energy associated with bus transition
– More frequent transition more power consumption

Bus encoding
– Goal 

• Reduce the number of bus transitions

– How
• Reduce the hamming distances between consecutive address and data 

transfers 

– Techniques
• Gray, Pyramid, Working Zone, Bus Invert techniques, etc.

21 pp >
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Reduced Bus Transition/Switching (2)

Data/Instruction organization
Reorganize data and/or instructions so that
– Consecutive memory references exhibit spatial locality
– Spatial locality leads to power efficiency

• Smaller Hamming distance between closer addresses
• Reduced bus switching activity

– Example of data organization
• Storage schemes for an array: row-major, column-major, tile-based
• Evaluate the their impact on bus switching, choose the optimal one
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Memory and Data Optimization (1)
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Memory and Data Optimization (2)

Cache and scratch-pad memory management
– Cache Management

• Careful data layout to reduce cache conflict
• Prefetching to increase cache hit ratio
• Cache module assignment

– Classify variables based on their spatial locality
– Assign variables of different locality into different cache modules

– Scratch-pad memory
• Data cache + on-chip memory + off-chip memory
• Data cache and on-chip memory

– Both allow for fast access
– Guaranteed single-cycle access by on-chip memory
– Cache miss could occur in data cache

• Key: Identify critical data to put in on-chip memory
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Memory and Data Optimization (3)

DRAM optimization
– DRAM: different addressing from those of SRAM

• Address = row address + column address
– Row address : address of a page
– Column address : offset within a page

• Separate row address decoding and column address decoding
• Each DRAM module has a page buffer
• Each READ read a whole page into page buffer

– DRAM-oriented optimization
• R-M-W optimization, hoisting, unrolling….

– DRAM multi-bank optimization
• Each bank has its own page buffer
• Simultaneous active memory pages is enabled
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Memory and Data Optimization (4)

Memory packing and array-to-memory assignment
– Memory dimension determination

• Pack all arrays into one single memory module
– Energy waste caused by area waste

• Pack each array into a separate memory module
– Energy waste caused by connectivity and address decoding waste

• Optimum lies between

– Algorithms
• Combined horizontal and vertical array packing

Physical memoriesLogical memories Assignment

a b c
a b

c
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Memory and Data Optimization (5)

• Exhaustive search solution
– Bit-width
– Word count
– Port number

• Recursive memory splitting
– Start from a single port solution
– Result in a distributed assignment

In-place logical array mapping
– Map different sections of logical arrays into the same physical 

memory, if their lifetimes are non-overlapping
– Goal: reduce physical memory size
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Memory and Data Optimization (5)

Register or multiport-memory allocation
– Like register allocation as done in compiler

• simultaneous access is limited by the port number

– Advantages over separate registers:
• Reduced interconnection cost
• Selective connection of registers and ports

Memory access scheduling 
– Based on DFG (data flow graph)
– Goal: reduce no. of memory modules and memory ports for low 

power
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Power-aware Compiler Technology (1)

Loop transformation
– Essential in power optimization

• Large matrix data often manipulated in loops
• Cache performance improvement

– Leads to reduced memory size and memory accesses
– Example

for( i = 0; i < M; i++ )
for( j = 0; j < N; j++ )
{

b[i][j] = 0;
for( k = 0; k < P; k++ )

b[i][j] = a[i][j+K];
}

for( i = 0; i < M; i++ )
for( j = 0; j < N; j++ )

b[i][j] = 0;
for( i = 0; i < M; i++ )

for( j = 0; j < N; j++ )
for( k = 0; k < L; k++ )

b[i][j] = a[i][j+k];
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Power-aware Compiler Technology (2)

Instruction-level scheduling
– Power dissipation table (PDT) based scheduling

• CDG ( control&data dependency graph ) construction
• PDT construction 

– List the power consumption for each consecutive instruction pair
• SCG (weighted strongly connected graph) construction

– Based on the CDG
– Each edge is weighted by the value in PDT

• Find the Hamiltonian tour of the SCG

– An example of CDG and its search space is given in the next page



35

Power-aware Compiler Technology (3)

CDG PDT & SCG
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Power-aware Compiler Technology (4)

Register allocation
– Minimization of the no. of registers in use after instruction 

scheduling
– The register count impacts 

• The area of the resulting design
• The size of register storage
• Thus, the power consumption

– Graph coloring approach
• NP-complete problem
• Many approximate algorithms proposed
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Power-aware Compiler Technology (5)

Compiler-controlled power management
– Dynamically tradeoff power for performance
– Embedded systems follow specific power/energy profiles
– Compiler works with OS tightly via

• Static analysis
• Profile-driven data
• Feedback-driven optimization

– An emerging research area
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Interleaved Memory and Bank Confliction
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Memory bank Conflict under Different 
Resolution and Stream Complexity

As resolution increases from QCIF to CIF format, 
memory bank conflict increased significantly
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Cache Miss before and after Optimization 
(Three test sequences)

As optimization goes, memory bank conflict gradually becomes the dominant 
data cache misses. 
Cache misses has important impact on the performance of EMA (30%)
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Loop Unrolling

Loop unrolling: overlaps different iterations of the loop body, creates N 
copies of the loop. 

byte *p, *g, *m, *d; 
for ( i=0; i<256; i++ ){ p[i] = g[i] - m[i];d[i] = p[i] * s;}
p += stride;g += stride;m += stride;d += stride;

Original Loop

for ( j=0; j<256; j+=4 ){
p[j] = g[j] - m[j]; (1)
d[j] = p[j] * s; (2)
j1 = j+1; (3)
p[j1] = g[j1] - m[j1]; (4)
d[j1] = p[j1] * s; (5)
j2 = j+2; (6)
p[j2] = g[j2] - m[j2]; (7)
d[j2] = p[j2] * s; (8)
j3 = j+3; (9)
p[j3] = g[j3] - m[j3]; (10)
d[j3] = p[j3] * s; (11)

}
Unrolled Loop
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Memory Access Pattern Analysis

Memory access is a major bottleneck on the performance of EMAs 
It decides the loop unrolling strategy.

EMA memory access pattern can be classified in spatial domain as:
– Horizontal Access
– Vertical Access
– Multi-word Width Access 
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Horizontal Access

A series of accesses to a string of consecutive memory locations
Most common memory access pattern found in EMAs
In DCT, motion search, intra-macroblock prediction, inter-macroblock
prediction, and etc.

for (j=0; j<4; j++)
{

for (i=0; i<4; i++) 
{

m7[i] = imgy_orig[i] - mpr[i];
}
imgy_orig += stride_imgy_orig;
mpr += stride_mpr;
m7 += 4;

}



46

Vertical Access

A transpose access pattern relative to horizontal access 
In loop filter, intra-prediction, interpolation, chroma prediction function 
and etc.

for (i=0;i<4;i++)
{

for (j=0;j<4;j++)
{

mprr_vert[i+j*stride] =   
(byte)((&P_A)[i]); 

}
}
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Multi-word Width Access

memory access width that exceeds the common word boundary (32 
bits) 
For example, Interpolation function

Iteration#1Iteration#1 Iteration#3Iteration#3

Iteration#2Iteration#2



48

SIMD-aware Loop Unrolling

Embedded media processor not as powerful as general 
processors
In general, Instruction Level Parallelism (ILP) is no longer 
sufficient to meet the unique requirements of EMAs
Compiler must have the ability to exploit Superword Level 
Parallelism (SLP) for EMAs
Loop unrolling is the essential way and the first step to 
exploit SLP
No SIMD-oriented loop unrolling algorithm available now
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Why Security Concern?

Traditional security concern like integrity, privacy 
and authentication
– Public transmission medium

Software solution alone is not sufficient
– Embedded system increasingly assembled from pre-designed 

components
Side-channel attack techniques becomes menace 
– Fault analysis
– Power analysis
– Timing analysis  
– Template analysis

Wireless security standard’s infancy
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ECDSA Workload – Computation (1) 
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ECDSA Workload – Computation (2)
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Efficient Multiplication Algorithm over 
VLIW Media Processor
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Rectangular Fashion Implementation 
(Scheme 1)

Scheme 1 rectangular fashion multiplication

For i from 0 to n-1 do
carry = 0
For j from 0 to n-1 do

(u,v) = xi • yj

(u,v) = (u,v) + zi+j

(u,v) = (u,v) + carry
zi+j = v
carry = u

zn+i = carry
return z x0 x1 x2 x3 x4

y0

y1

y2

y3
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Diagonal Fashion Implementation 
(Scheme 2)

Scheme 2 unrolled diagonal fashion multiplication

r2=r1=r0=0, tn=…=t0=0
For i from 0 to 2n-2 do

tn= tn-1
(un,vn) = tn• y n
…
t1= t0
(u1,v1) = t1• y 1
t0= xi, if i<n, 0 others
(u0,v0) = x0• y 0
r0= r0+v0+…+vn, 
r1= add_with_carry(r1, u0,…, un)
r2= add_with_carry(r2,0)
zi = r0, r0= r1, r1= r2, r2= 0

z2n-1= r0
return z 

x0 x1 x2 x3 x4

y0

y1

y2

y3
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FIR Fashion Multiplication (Scheme 3)

Scheme 3 FIR based multiplicationIllustration for the FIR instruction 

t0=t1=…=tn=carry=0;
For i from 0 to 2n-1 do

Set x = xi, if i<n
0, if i>=n

Left-shift 8 bits from x to tn, tn-1, …, t0
Do FIR for all the pairs of tm and ym
Set r0 as the sum of all the FIR results
Compute r1 by the same progress as above (left-

shift, FIR, sum)
Compute r2 by the same progress
Compute r3 by the same progress
zi = r0+( r1<<8 ) + ( r2<<16 ) + ( r3<<24 ) + carry
carry = add_with_carry( ( r2>>16 ), ( r3>>8 ) )

return z 

y3 y2 y1 y0
07152331

x3 x2 x1 x0
07152331

rsrc1

rsrc2

x3*y3+x2*y2+x1*y1+x0*y0

031

dest
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Result of Optimization – Issue Rate and 
Results

Metric for program efficiency measure 
VLIW structure can issue several operations 
simultaneously (5 for Trimedia TM1300)
Enhance issue rate could speedup the performance

3.963.702.25 Issue rate 

5344969 4161626 6465452 Cycle count 

Scheme 3Scheme 2Scheme 1
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Result of Optimization
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Conclusion

Important SIMD-related solutions
– SIMD-controlled padding-based memory bank-conflict reduction
– SIMD-oriented loop unrolling scheme
– SIMD-based FIR solution for cryptographic algorithm 

implementation

Compiler
– Memory access mode  
– Register allocation
– Loop unrolling

Power management optimization
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