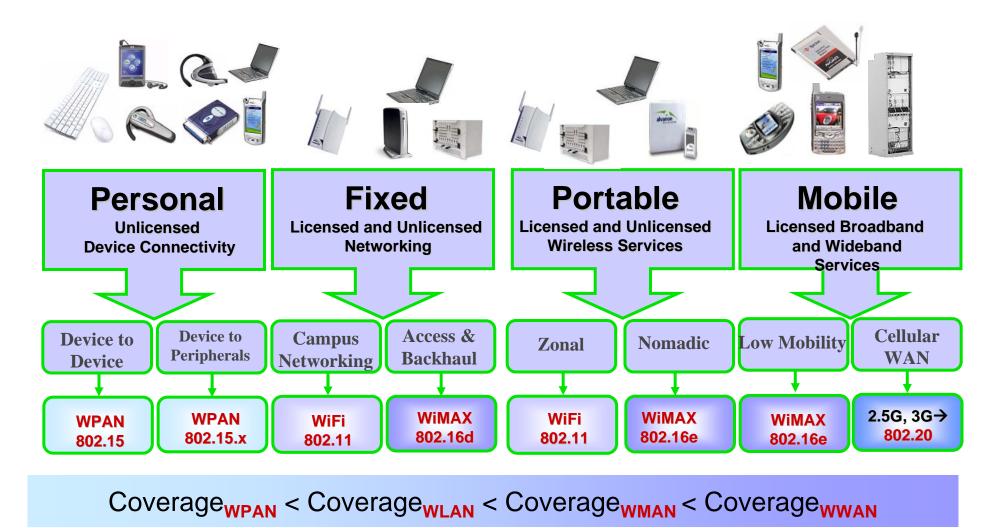
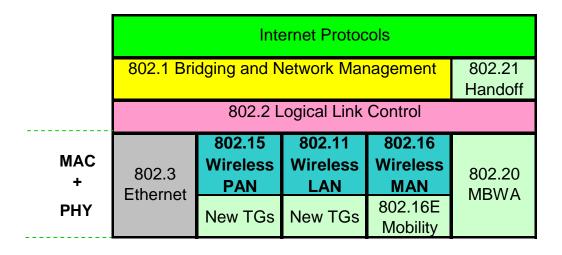
Mobile WiMax: Description and Deployment

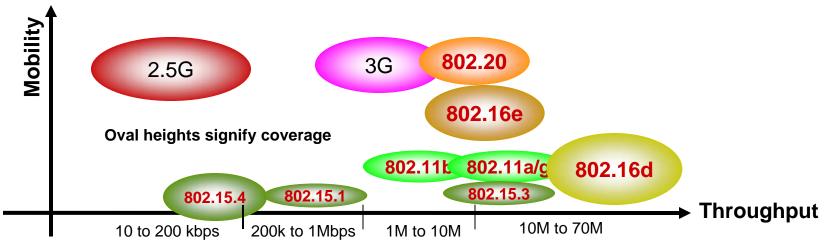
Dr. Zulfiquar Sayeed

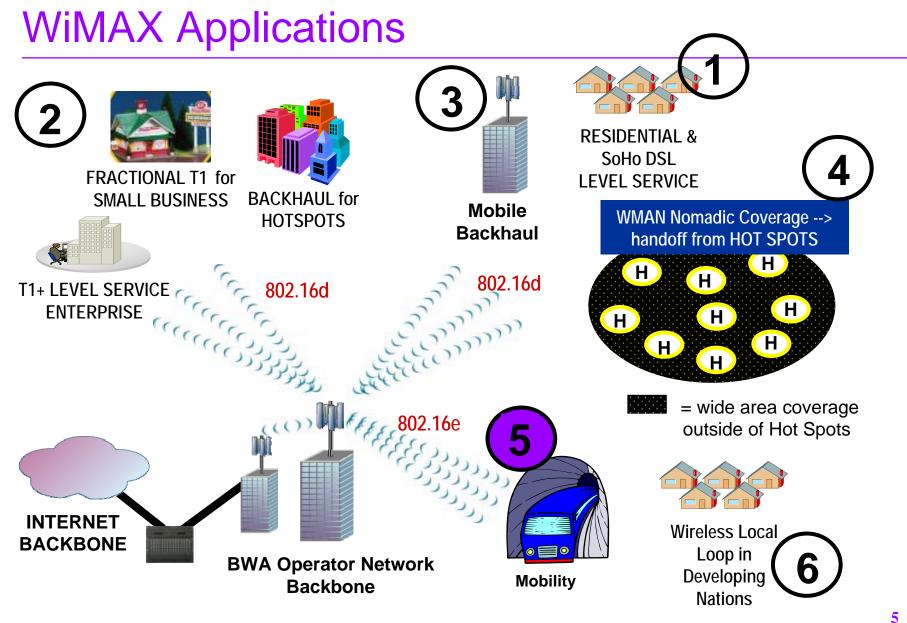
Alcatel Lucent


Bell Labs

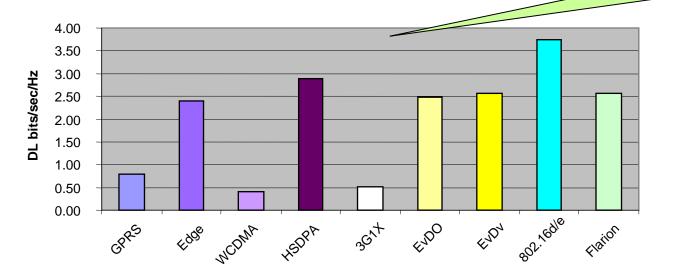
zsayeed@alcatel-lucent.com 732-949-3055


Outline

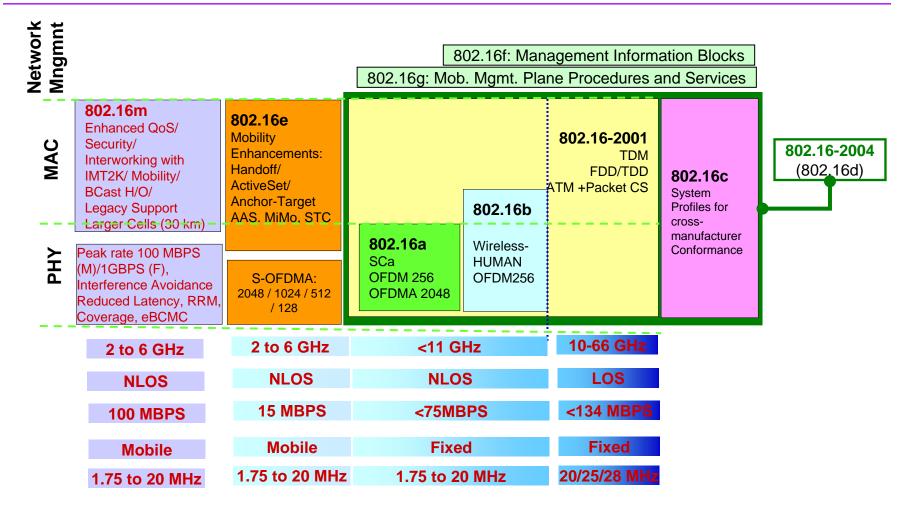

- The big picture
- 802.16 Specifications family
- OFDM and OFDMA fundamentals
- Profiles
- System architecture, handoff, QoS
- Summary


The Big Picture

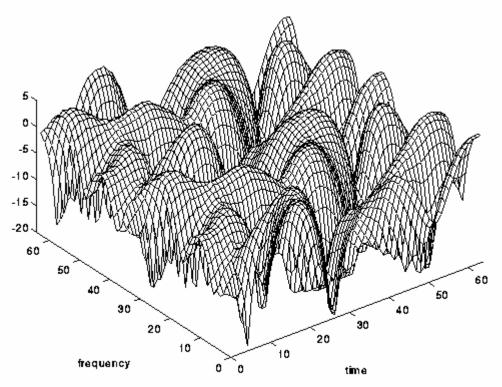
Zones of Interest of the IEEE



Source: Alvarion

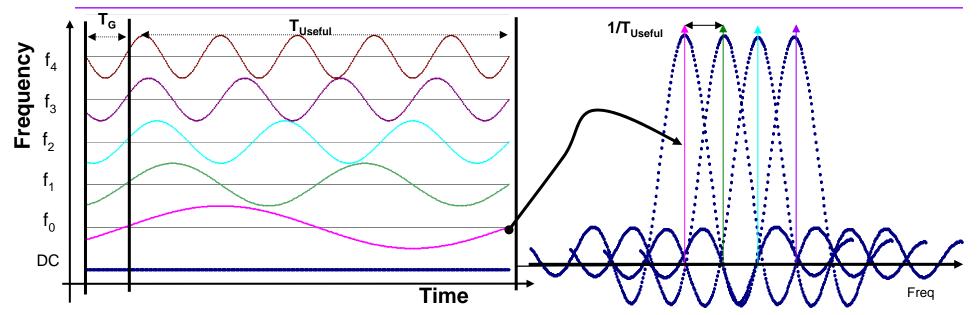

Comparing 802.16d/e with Others

	Channel Bandwidth	FDD/TDD	DL Peak	UL Peak	Standard Body	bits/sec/ hz			
GPRS	200 KHz	FDD	160 kbps	160 kbps	3GPP2	0.80			
Edge	200 1112		480 kbps	480 kbps		3GPP2		2.40	
WCDMA		FDD/TDD	2 Mbps	2 Mbps			0.40		
HSDPA	5 MHz	FDD	14.4 Mbps	7 Mbps		2.88			
3G1X	1.25 MHz	FDD	640 kbps	450 kbps	3GPP	0.51			
EvDO			3.1 Mbps	1.8 Mbps		2.48			
EvDv			3.1 Mbps	1.8 Mbps					2.56
802.16d/e	upto 20 MHz	FDD/TDD	upto 75 Mbps	upto 75 Mbps	IEEE	3.75	Normalize Throughpu		
Flarion	1.25 MHz	FDD	3.2 Mbps	900 kbps	-	2.56	Compariso		
		-	-				 (Peak Burst		



Wireless and Optical Communications Conference, NJIT, April 27th 2007

802.16 Specifications


Why OFDM

Rayleigh Envelope Variation is time and frequency

- NLOS signal envelopes are Rayleigh distributed
- The signal fades both with time and frequency separation
- Time correlation decreases with increasing velocity (Doppler)
- Frequency correlation decreases with increased multipath delay spread
- Diversity is *the* key to enhance performance in fading environments
- CDMA uses multiple rake fingers to capture frequency diversity
- OFDM uses parallel long duration pulses to capture time diversity
- Frequency diversity is captured by coding across time and frequency

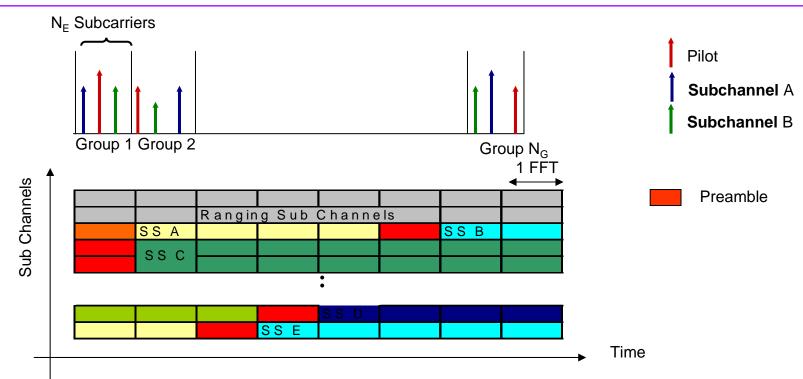
OFDM Basics

- Signal is accessible in time and frequency → Time variations and frequency variations can be coded/interleaved across
- ➔ Advanced Space-Time-Frequency Coding

■ Guard Interval absorbs the designed multipath effects → Single tap multiplicative equalizer → NLOS operation

■ OFDMA: Single Frequency Network operation with reuse factor of 1 → Planning benefit + Spectrum Utilization

Invented at Bell Labs : Chang and Gibby, 1960s → DVB-T, SDARs, WiFi, WiMax, HiperLAN/MAN, DAB, DSL and coming in EvDO, UMTS!


R.W. Chang [1966], "Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmission," Bell System Technical Journal, 45, pp. 1775-1796.

✓ B. R. Salzberg [1967], "Performance of an Efficient Parallel Data Transmission System," IEEE Transactions on Communication Technology, 15, 6, pp 805-811

✓ R.W. Chang, and R.A. Gibby [1968], "Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme," IEEE Transactions on Communication Technology, 16, 4, pp. 529-540.

 S.B. Weinstein, and P.M. Ebert [1971], "Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform," IEEE Transactions on Communication Technology, 19, 5, pp. 628-634

OFDMA Operations

Different modulation/coding in each sub channel

Media Access Protocol (MAP) messages are used to assign SSs to Sub channels

□ FFT Size = 2048; DL: $N_G = 48 / N_F = 32$; UL: $N_G = 53 / N_F = 32$; 1 Schannel $\approx 1/32^{nd}$ of total BW

Sub-carriers are assigned in a pseudorandom fashion to the SSs

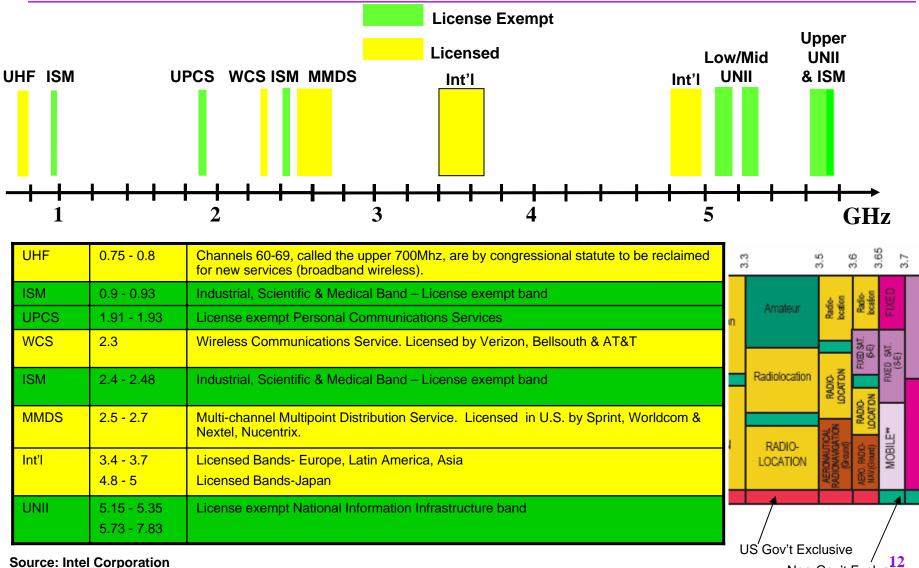
□ High throughput SSs are assigned more that one SC

□ SSs need only modulate a few of the 2048 SCs/ BS modulates all → Commensurate with low power CPEs and building penetration loss

□ Throughput per Sub channel (6 MHz) = 178.1 (QPSK) / 428.1 (16 QAM) / 668.7 (64 QAM) (kbps)

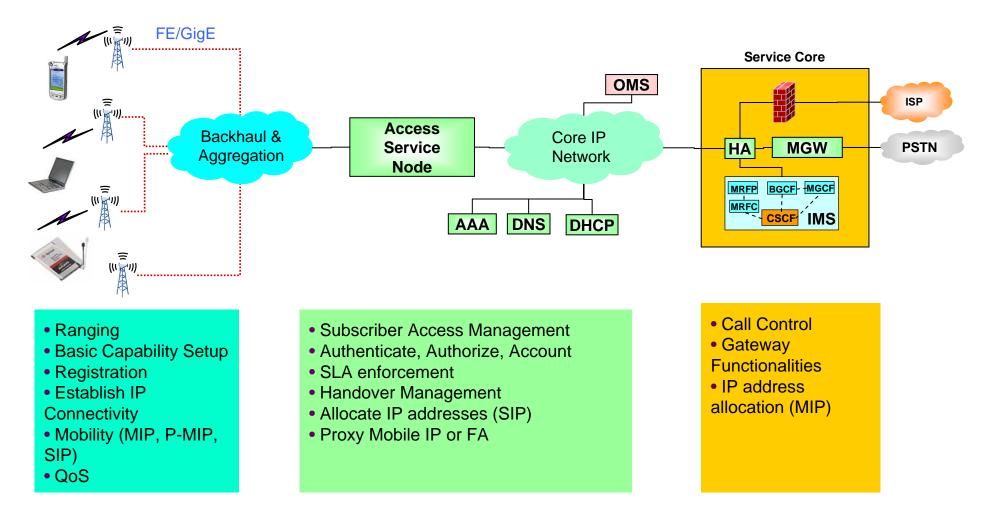
□ Total Throughput (6 MHz) = 4.8 / 11.6 / 18.2 MBPS

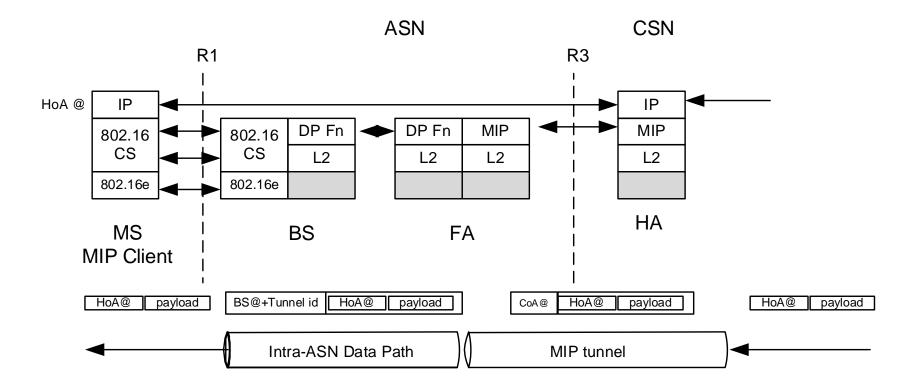
802.16e and WiMax Profiles


PhyProfiles	Bandwidth	Duplexing (OFDMA_R1 to OFDMA_R30 RF profiles)		
ofdma_profP1	1.25 MHz	TDD		
ofdma_profP2	3.5 MHz	TDD/FDD		
ofdma_profP3	7.0 MHz	TDD/FDD		
ofdma_profP4	8.75 MHz	TDD		
ofdma_profP5	14 MHz	TDD/FDD		
ofdma_profP6	17.5 MHz	TDD		
ofdma_profP7	28 MHz	TDD/FDD		
ofdma_profP8	10 MHz	TDD		
ofdma_profP9	20 Mhz	TDD		
Mod	ulation	4/16/64.		
Symb	ol Rate	(BWMHz-0.88)/1.25		
FFTSize: D: 2048 / E: 2048/1024/512/128 (SOFDMA)				

		Frequency band (GHz)					
Channelization (MHz)	FFT Size	2.3 - 2.4	2.305- 2.32	2.345- 2.36	2.496- 2.69	3.3 - 3.4	3.4-3.8
5	512	TDD	TDD	TDD	TDD	TDD	TDD
7	1024					TDD	TDD
8.75	1024	TDD					
10	1024	TDD	TDD	TDD	TDD	TDD	TDD

Wireless and Optical Communications Conference, NJIT, April 27th 2007


Spectrum Availability


Non-Gov't Exclusive

Wireless and Optical Communications Conference, NJIT, April 27th 2007

Mobile WiMax System Architecture

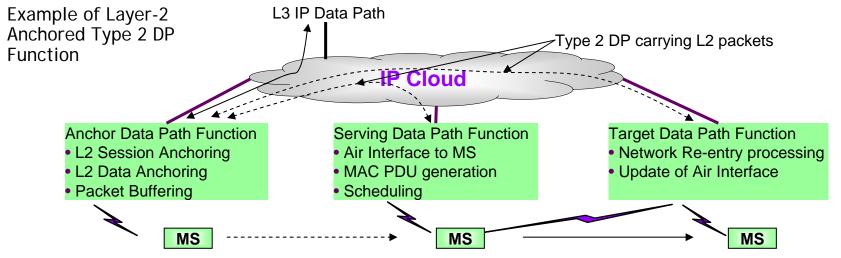
Mobile IP in Mobile WiMax

CS: Convergence Sublayer

DP: Data path function

Source: WiMax Forum NWG

WiMAX Handoffs (1)

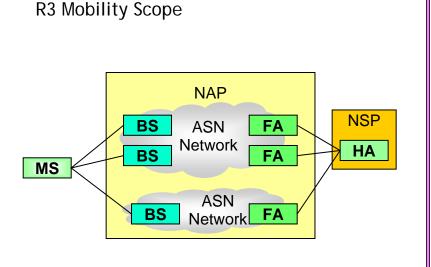

ASN Anchored Mobility (Micro Mobility)

 Mobility of an MS not involving a CoA update (i.e. a MIP re-registration) with the following functions defined

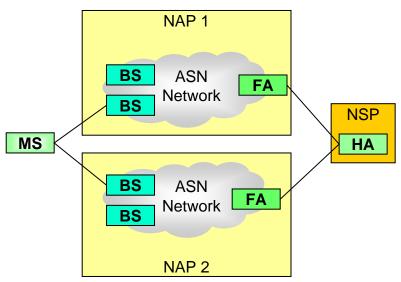
✓ Data Path (Bearer) Function: Manages the data path setup and includes procedures for data packet transmission between two functional entities (usually b/w BSs)

• Type 1: IP or Eth forwarding over IETF L2 (Eth or MPLS) or L3 IP-in-IP or GRE...) transport

- Type 2: 802.16E MAC forwarding over IETF L2 (Eth or MPLS) or L3 IP-in-IP or GRE...) transport
- Handoff Function: Controls overall HO decision operation and signaling procedures related to HO
- Context Function: Addresses the exchanges required in order to setup any state or retrieve any state in network elements.



Wireless and Optical Communications Conference, NJIT, April 27th 2007


WiMAX Handoffs (2)

CSN Anchored Mobility (Macro Mobility)

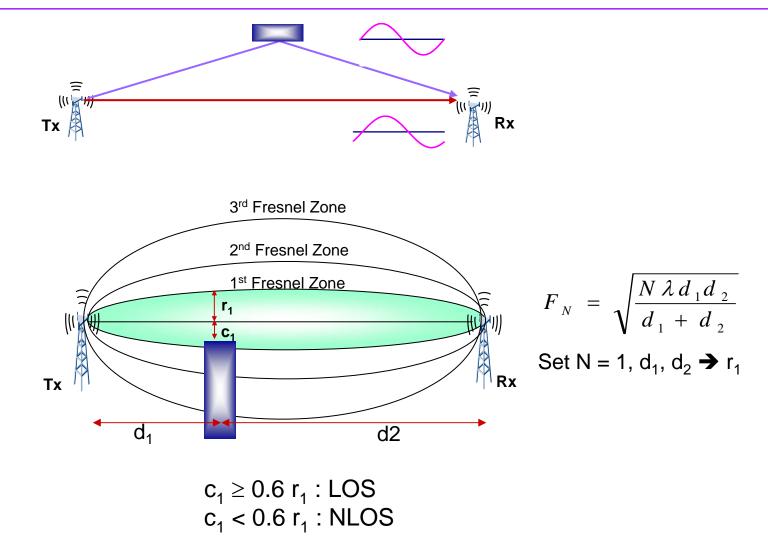
- Mobile IP based macro mobility between the ASN and CSN across R3 reference point
- In case of IPv4 implies re-anchoring of FAs
- If FA serves multiple BSs then CSN anchored mobility umbrellas ASN anchored mobility (within the FA)
- Reverse Tunneling b/w ASN and CSN shall be supported
- For non-roaming HA must be in CSN, Roaming: HA either in V-NSP or H-NSP
- User subscription profile in H-CSN
- MIP client shall always operate as if in a foreign network
- P-MIP shall be supported in which case MS is unaware of CSN anchored mobility

Wireless and Optical Communications Conference, NJIT, April 27th 2007

NAP: Network Access Provider NSP: Network Service Provider

802.16e QoS Offerings

QoS Class	٦	Type of traffic	S	cheduling	Parameters	
Unsolicited Grant Service (UGS)		ervices with fixed size data missions. E.g: T1/E1/VoIP pression	BS grants service periodically. SS contention and piggyback requests prohibited.		Unsloicited grant size, Grants per interval, Nominal grant interval, Tolerated grant jitter	
Realtime Polling Services (rtPS)		with variable sized packets c transmission. E.g: MPEG	Periodic unicast request opportunities granted to SS. Contention/piggyback requests prohibited		Nominal polling interval, tolerated poll jitter, minimum reserved traffic rate	
Enhanced RTPS (ertPS)	packets on a pe	es with variable size data riodic basis, such as Voice with silence suppression.	Efficiency of both UGS and rtPS. Unicast grants in an unsolicited manner like in UGS, UGS allocations are fixed in size, ertPS allocations are dynamic. Piggyback.		Maximum Sustained Traffic Rate, the Minimum Reserved Traffic Rate, the Maximum Latency, and the Request/Transmission Policy.	
Non-realtime polling services (nrtPS)	· · · · · · · · · · · · · · · · · · ·	vith variable packet size and hission. E.g.: FTP	Periodic unicast request opportunities granted to SS but farther apart. Contention/piggyback requests allowed		Nominal polling interval, minimum reserved traffic rate, traffic priority	
Best Effort (BE)	Handled on a space available basis		Contention/ from SS to	piggyback requests BS	Minimum reserved traffic rate, traffic priority	
Parameters for QoS Provisioning		Service Flow Identifier Connection ID Service Class Name QoS Parameter Set Type Traffic Priority Maximum Sustained Traffic Rate Maximum Traffic Burst		Minimum Reserved Traffic Rate Minimum Tolerable Traffic Rate Service Flow Scheduling Type Request/Transmission Policy Tolerated Jitter Maximum Latency Fixed-length versus Variable-length SDU Indicator		


QoS parameters are of 3 types: {Provisioned, admitted and active} == QoS Parameter Set

Summary

- Mobile WiMax is a forerunner to the 4G evolution and architecturally is well ahead of LTE and EvDO Rev C
- OFDM and the all IP architecture is what 4G systems are heading towards and WiMax is already there (and will converge with 16m)
- Mobile WiMax offers a scalable solution that accommodates users with varying capacity demands
- Mobile WiMax has superior QoS mechanisms built into the standards
- □ Mobile WiMax offers a a mobility evolution plan (SIP, P-MIP, MIP; IPv4, IPv6)
- Drawbacks:
 - WiMax has defined only TDD operations (government sector...)
 - Large bandwidths require large spectrum to tessellate (MiMo, AAS will alleviate)
 - Higher band of operation will shorten coverage (need to work on lower carriers...)

Appendix

So What is LoS?

System Operation

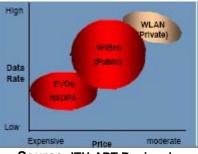
SS "enters" BS service area	BS				
SS Scans for DL Channel → DL Synched	DL-MAP Broadcast: Phy Synch field, Operator ID, Sector ID, MAP message length,				
Obtain UL Parameters	DCD broadcast: BS Power, PHY type, DL burst profile, Modulation type, FEC, Phy synch, BSID + UCD broadcast: PHY sycnh field, BSID, Phy specs,				
Ranging and Adjust Parameters	Range-Req: requested DL burst profile, SS MAC addr, Ranging anomalies, SS broadcast capabilities Range-Rsp: Timing adjust, Pwr IvI adjust, Freq offset adj, ranging status, DL freq override, UL freq override, burst profile, SS Mac addr, CID,				
Negotiate Basic Capabilities	SS Bc-Req: CID, PHY params supported, Bandwidth allocations supported, SS Bc-Rsp: CID, PHY params supported, Bandwidth allocations supported,				
Register with BS	Reg-Req: CID, Hashed Msg Auth Code, IP vers, Vendor ID, CS capability, ARQ params Reg-Rsp: CID, Ok/Not, HMAC tuple, IP vers, Vendor ID, CS capability, ARQ params				
Establish IP Connectivity	 DHCP-Req: H/W type = Ethernet, MAC addr., Params requested: Subnet mask, Time offset, Router option, Time server option, Vendor class identifier DHCP-Req: IP Addr., TFTP provisioning server name, Time offset, List of routers, 				
Establish ToD	ToD Req/Rsp				
Transfer Operational Parameters	TFTP Config File(Download SS binary Configuration File) TFTP Complete: CID TFTP RSP: CID, OK/Not				
Establish Provisioned Connections	 DSA-Req (SS or BS initiated): Service flow params, CS parameter encodings(802.3, 802.1p, 1q, ATM), DSA-Rsp): CID, Trnsaction ID, Conirmation Code, Service flow params, CS param encodings, Service flow error set, 				
	Operational				

WiBro: 2.3 GHz Portable Internet

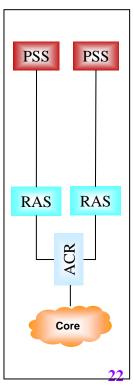
Standardization and Commercialization:

- \Box Korean standardization effort \rightarrow TTA
- □ Named in April 2004: Wireless Broadband \rightarrow WiBro
- □ Urban, High data rate >1 MBPS @ <60 km/hr
- Draft Completion/802.16e Harmonization: Q205, Field testing : 4Q05,
- Commercialization: 1Q06
- □ Korea Information Strategy Development Institute: ">10.5M users by 2010"

System Profile


Standard activities: Radio (PHY, MAC, RRC), Services & Network, IPR Processing, I'natl coordination

System Definition:


- Frequency Reuse: 1
- 2.3 GHz only
- TDD-only with 5 m-sec framing
- Service Coverage: 1 km
- Mobility < 60 km/hr,
- Spectral Efficiency: DL/UL = 6/2 (max) 2/1 (avg)
- Throughput/user: DL/UL = 3/1 Mbps (max); 512/128 kbps (avg)
- Throughput/sector: DL/UL = 18/6 MBPS
- QPSK/16/64 QAM
- Handoff time: 150 ms
- 10 MHz B/W OFDMA

<u>Network elements:</u> PSS (Personal SS), RAS (Radio Access Station), ACR (Access Control Router)

□ <u>ACR</u>: Packet classification, header suppression, service flow management, traffic switching wand integration, H/O management...

Source: ITU-APT Regional Seminar 2004

