Semi-supervised Image Classification in Likelihood Space

Rong Duan, Wei Jiang, Hong Man
Stevens Institute of Technology
Introduction

- Semi-supervised learning
- Model Mis-specification in classification
- Log-likelihood space classification
Terms

D_k
Data sample $D_k = \{X_1^{(k)}, \ldots, X_m^{(k)}\}$,

Q
Training data: $Q = \{Q_{\text{label}}, Q_{\text{unlabel}}\}$,

Q_{label}
Labeled training data $Q_{\text{label}} = \{(D_1, 1), (D_2, 2)\}$,

Q_{unlabel}
Unlabeled training data $Q_{\text{unlabel}} = \{(D_1, 1), (D_2, 2)\}$

$g_k(x)$
True distributions $g_k(x)$, $k \in K$.

$f_k(x, \theta_k)$
Assume model distribution: $f_k(x, \theta_k)$

ξ_l and ϵ_l
Labeled data training crosspoint and error
Terms --- Cont’

\(\xi_{m_{opt}} \) and \(\varepsilon_{m} \)
Model misspecified crosspoint and error

\(\xi_{opt} \) and \(\varepsilon_{opt} \)
Bayes optimal crosspoint and error

\(\xi_{u} \) and \(\varepsilon_{u} \)
Unlabeled data training crosspoint and error

\(Z_{i}(1) \) and \(Z_{j}(2) \)
Likelihood space :
\[
Z_{i}(1) = [f_{1}(X_{i}(1), \theta_{1}), f_{2}(X_{i}(1), \theta_{2})]
\]
\[
Z_{j}(2) = [f_{1}(X_{j}(2), \theta_{1}), f_{2}(X_{j}(2), \theta_{2})]
\]

\(S_{w} \)
within-class scatter matrix

\(S_{b} \)
between-class scatter matrix
Semi-supervised learning

- **Supervised classification**: target variable is well defined and that a sufficient number of its values are labeled.
- **Unsupervised classification**: no labeled training data are available.
- **Semi-supervised learning**: using large amount of unlabeled training data to help limited amount of labeled training data to improve classification performance.
Semi-supervised learning – Cont’

- parametric generative mixture models approach:
 - labeled data is used initially to estimate mixture model parameters;
 - naive bayes classifier is used to label unlabeled data
 - re-estimate the mixture model parameters use The combined labeled and unlabeled data
Semi-supervised learning – *Cont’*

- The optimal probability of labeled and unlabeled data error will converge at a speed related to the size of labeled training data, when labeled and unlabeled data are from the same structure family[5],

- Unlabeled data degrade classification performance when model misspecified
Semi-supervised learning – *Cont’*

- Classification error: Bayes error, estimation error and Model error

\[\varepsilon_{\text{opt}} = A + B + C \]

\[\varepsilon_{m} = D \]
Semi-supervised learning

--- simulation

- Rayleigh distributed true data and mis-specify as Gaussian
- **1st simulation:**
 The labeled training data estimated cross point $\xi_l = (f_1(x/(\mu_1,\sigma_1)) \equiv f_2(x/(\mu_2,\sigma_2))$ is further away from ξ_{opt} than model misspecified and unlabeled data crosspoint $\xi_{(m+u)}$.
Semi-supervised learning

--- simulation

- 2nd simulation:

 the estimated distribution cross point is closer to ξ_{opt} than $\xi_{(m+u)}$.
Semi-supervised learning

Simulation 1

Simulation 1: \(\text{Dist}(\xi_l, \xi_{opt}) > \text{Dist}(\xi_{(m+u)}, \xi_{opt}) \)

\[\varepsilon_l > \varepsilon_{m_{opt}} + \varepsilon_u \]
Semi-supervised learning

Simulation 2

Simulation 2: $\text{Dist}(\xi_l, \xi_{opt}) < \text{Dist}(\xi_{(m+u) opt}, \xi_{opt})$

$\varepsilon_l < \varepsilon_{m_{opt}} + \varepsilon_u$
Semi-supervised learning – simulation

Conclusion:

When model mis-specified, unlabeled data help to improve classification performance only when the estimation error for labeled training data is bigger than model error and unlabeled data estimation error.

\[
\text{Dist}(\xi_l, \xi_{opt}) > \text{Dist}(\xi_{(m+u)}, \xi_{opt})
\]

\[
\varepsilon_l > \varepsilon_{m_{opt}} + \varepsilon_u
\]
Classification in Likelihood space

- Construct likelihood space by projecting the data to different classes separately.
- Apply Linear Discriminate Analysis to likelihood space data to classify the data.
 - $S_w = \sum (q_\{\omega\}_i E \{(Z-M_i)(Z-M_i)^T|i\})$
 - $S_b = \sum (q_\{\omega\}_i (M_i-M_0)(M_i-M_0)^T)$
 - The optimal LDA projection matrix:
 $$W_{opt} = [w_1, w_2, ..., w_D] = \arg \max_W \left(\frac{\text{tr}(W^T S_b W)}{\text{tr}(W^T S_w W)} \right)$$
Supervised Classification in likelihood space

- simulation

- $G(x) = \text{Rayleigh}$ $F(x) = \text{Gaussian}$

Design:
- Labeled training data size: 50:50:200
- Estimate Gaussian parameters $(\mu_1, \sigma_1), (\mu_2, \sigma_2)$ from training data
- Find LDA boundary in likelihood space

Result:
- Green Line: Bayes Optimum error
- Blue Line: Likelihood space classification error
- Red line: raw data space classification error

Conclusion:
- Likelihood space do improve classification performance in supervised learning
Supervised Classification in likelihood space
- SAR

Design:
- MSTAR SAR data: T72, BMP2 2 GMMs with 5 mixtures. $q_{\omega_1} = \cdots = q_{\omega_k}$
- Increase training data size by 50 each time.

Conclusion:
- under a practical situation, accurate model assumption is difficult to obtain, and likelihood space classification has an advantage on handling model mis-specification.
Semi-supervised Classification in likelihood space

- *simulation*

- Rayleigh distributed true data and mis-specified as Gaussian

Design:
- Labeled training data size: 10:50:510, unlabeled data size 500; testing size 8000
- Estimate Gaussian parameters \((\mu_1, \sigma_1), (\mu_2, \sigma_2)\) from labeled training data
- Classify unlabeled data using Bayes classifier,
- Reestimate \((\mu_1, \sigma_1), (\mu_2, \sigma_2)\) from labeled + psuedo labeled training data
- Bayes classifier in raw data space.
- LDA classifier in likelihood space

Result:
- Green Line: Bayes Optimum error without model misspecification
- Red Line: Likelihood space classification error
- Blue line: raw data space classification error

Conclusion: likelihood space do improve classification performance in semi-supervised learning
Semi-supervised Classification in likelihood space – SAR

Design:
- Labeled training data size: 10:10:232, unlabeled data size 232-labeled training data; testing size 588
- Estimate Gaussian parameters \((\mu_1, \sigma_1), (\mu_2, \sigma_2)\) from labeled training data
- Classify unlabeled data using Bayes classifier,
- Reestimate \((\mu_1, \sigma_1), (\mu_2, \sigma_2)\) from labeled + pseudo labeled training data
- Bayes classifier in raw data space.
- LDA classifier in likelihood space

Result:
- Pink Line: raw data space classification error for labeled training data only
- Blue Line: Likelihood space classification error for label + unlabeled training data
- Red line: raw data space classification error for label + unlabeled training data

Conclusion:
likelihood space do improve classification performance in semi-supervised learning
Conclusion

- Unlabeled data may not always help to improve the semi-supervised classification performance, especially when model assumption is inaccurate.

- Projecting data samples into likelihood space and then applying LDA for classification may have better robustness with regard to model mis specification.