

Department of Electrical and Computer Engineering Visual Information Environment Laboratory

Semi-supervised Image Classification in Likelihood Space

Rong Duan, Wei Jiang, Hong Man Stevens Institute of Technology

Introduction

- Semi-supervised learning
- Model Mis-specification in classification
- Log-likelihood space classification

Terms

 D_k Data sample $D_k = \{X_1^{(k)}, \dots, X_m^{(k)}\}$,

Q Training data: $\mathbf{Q} = {\mathbf{Q}_{label}, \mathbf{Q}_{unlabel}},$

Labeled training data $\mathbf{Q}_{label} = \{(D_1, 1), (D_2, 2)\},$

 $Q_{unlabel}$ Unlabeled training data $Q_{unlabel} = \{(D_1,1),(D_2,2)\}$

 $g_k(x)$ True distributions $g_k(x)$, k 2 K.

 $f_k(x, \theta_k)$ Assume model distribution: $f_k(x, \theta_k)$

ξ_I and ε_I Labeled data training crosspoint and

error

Terms --- Cont'

 $\xi_{m_{opt}}$ and ϵ_{m}

 ξ_{opt} and ϵ_{opt}

 $\xi_{\mathbf{u}}$ and $\varepsilon_{\mathbf{u}}$

 $Z_i^{(1)}$ and $Z_i^{(2)}$

S_w

Model misspecified crosspoint

and error

Bayes optimal crosspoint and

error

Unlabeled data training

crosspoint and error

Likelihood space : $\mathbf{Z_i^{(1)}} = [f_1(X_i^{(1)},$

 θ_1), $f_2(X_i^{(1)}, \theta_2)$]

 $\mathbf{Z_{j}^{(2)}} = [f_1(X_j^{(2)}, \theta_1), f_2(X_j^{(2)}, \theta_2))]$

within-class scatter matrix

between-class scatter matrix

- Supervised classification: target variable is well defined and that a sufficient number of its values are labeled.
- Unsupervised classification: no labeled training data are available.
- Semi-supervised learning: using large amount of unlabeled training data to help limited amount of labeled training data to improve classification performance.

Semi-supervised learning – Cont'

- parametric generative mixture models approach:
 - labeled data is used initially to estimate mixture model parameters;
 - naive bayes classifier is used to label unlabeled data
 - re-estimate the mixture model parameters use The combined labeled and unlabeled data

Semi-supervised learning – Cont'

- The optimal probability of labeled and unlabeled data error will converge at a speed relate to the size of labeled training data, when labeled and unlabeled data are from the same structure family[5],
- Unlabeled data degrade classification performance when model misspecified

Semi-supervised learning – Cont'

 Classification error: Bayes error, estimation error and Model error

$$\varepsilon_{opt} = A + B + C$$

$$\varepsilon_{m} = D$$

--- simulation

- Rayleigh distributed true data and mis-specify as Gaussian
- 1st simulation:

The labeled training data estimated cross point ξ_{l} = ($f_1(x/(\mu_1,\sigma_1))$) == $f_2(x/(\mu_2,\sigma_2))$ is further away from ξ_{opt} than model misspecified and unlabeled data crosspoint $\xi_{(m+u)}$.

--- simulation

2nd simulation:

the estimated distribution cross point is closer to ξ_{opt} than $\xi_{(\text{m+u})}.$

simulation1

Simulation 1: Dist(ξ_{l} , ξ_{opt})> Dist($\xi_{(m+u)}$, ξ_{opt}) $\epsilon_{l} > \epsilon_{m_{opt}} + \epsilon_{u}$

simulation2

Simulation 2: Dist(ξ_{l} , ξ_{opt})< Dist($\xi_{(m+u)}$, ξ_{opt}) $\varepsilon_{l} < \varepsilon_{mont} + \varepsilon_{l}$

simulation

Conclusion:

When model mis-specified, unlabeled data help to improve classification performance only when the estimation error for labeled training data is bigger than model error and unlabeled data estimation error.

Dist
$$(\xi_{l}, \xi_{opt})$$
 > Dist $(\xi_{(m+u)}, \xi_{opt})$
 $\varepsilon_{l} > \varepsilon_{m_{opt}} + \varepsilon_{u}$

Classification in Likelihood space

- Construct likelihood space by project the data to different classes seperatly.
- Apply Linear Discriminate Analysis to likelihood space data to classify the data.

-
$$S_w = \sum (q_{\{\omega\}_i} E\{(Z-M_i)(Z-M_i)^T|i\})$$

$$- S_b = \sum (q_{\{\omega\}_i} (M_i - M_0) (M_i - M_0)^{T)}$$

The optimal LDA projection matrix:

$$W_{opt}=[w_1,w_2,...,w_D] = arg max_W(tr(W^TS_bW)/tr(W^TS_wW)$$

Supervised Classification in likelihood space

- simulation

G(x) = Rayleigh F(x) = Gaussian

Design:

- Labeled training data size: 50:50:200
- Estimate Gaussian parameters (μ_1, σ_1) , (μ_2, σ_2) from training data
- Find LDA boundary in likelihood space

Result:

- Green Line: Bayes Optimum error
- Blue Line: Likelihood space classification error
- Red line: raw data space classification error

Conclusion:

 likelihood space do improve classification performance in supervised learning

Supervised Classification in likelihood space

- SAR

Design:

- MSTAR SAR data: T72, BMP2 2
 GMMs with 5 mixtures. qω1 = ··· = qωk
- Increase training data size by 50 each time.

Conclusion:

 under a practical situation, accurate model assumption is difficult to obtain, and likelihood space classification has an advantage on handling model mis-specification.

Semi-supervised Classification in likelihood space

- simulation

Rayleigh distributed true data and mis-specified as Gaussian

Conclusion: likelihood space do improve classification performance in semi-supervised learning

Design:

- Labeled training data size: 10:50:510, unlabeled data size 500; testing size 8000
- Estimate Gaussian parameters (μ_1, σ_1) , (μ_2, σ_2) from labeled training data
- Classify unlabeled data using Bayes classifier,
- Reestimate $(\mu_1, \sigma_1), (\mu_2, \sigma_2)$ from labeled + psuedo labeled training data
- Bayes classifier in raw data space.
- LDA classifier in likelihood space

Result:

- Green Line: Bayes Optimum error without model misspecification
- Red Line: Likelihood space classification error
- Blue line: raw data space classification error

Semi-supervised Classification in likelihood space

- SAR

Conclusion:

likelihood space do improve classification performance in semi-supervised learning

Design:

- Labeled training data size: 10:10:232, unlabeled data size 232-labeled training data; testing size 588
- Estimate Gaussian parameters (μ_1, σ_1) , (μ_2, σ_2) from labeled training data
- Classify unlabeled data using Bayes classifier.
- Reestimate $(\mu_1, \sigma_1), (\mu_2, \sigma_2)$ from labeled + pseudo labeled training data
- Bayes classifier in raw data space.
- LDA classifier in likelihood space

Result:

- Pink Line: raw data space classification error for labeled training data only
- Blue Line: Likelihood space classification error for label + unlabeled training data
- Red line: raw data space classification error for label + unlabeled training data

Conclusion

- Unlabeled data may not always help to improve the semi-supervised classification performance, especially when model assumption is inaccurate.
- Projecting data samples into likelihood space and then applying LDA for classification may have better robustness with regard to model mis specification.

