Robust Adjusted Likelihood Function for Image Analysis

Rong Duan, Wei Jiang, Hong Man

Department of Electrical and Computer Engineering Stevens Institute of Technology

Outline

- Objective: study parametric classification method when model is misspecified
- Method: robust adjusted likelihood function (RAL)
- Contents:
 - 1. Likelihood function under true model
 - 2. Model misspecification
 - 3. Robust adjusted likelihood function
 - 4. Simulation and application experiment
 - 5. Conclusion

Likelihood

- Let x_1, \dots, x_n be independent random variables with pdf $f(x_i; \theta)$
 - the likelihood function is defined as the joint density of *n* independent observations $X=(x_1, ..., x_n)'$

$$f(X;\theta) = \prod_{i=1}^{n} f(x_i;\theta) = L(\theta;X)$$

- the log form is

$$\log(L(\theta;X)) = \sum_{i=1}^{n} \log(f(x_i;\theta))$$

Likelihood

- The Law of Likelihood (Hacking 1965)
 - If one hypothesis H_1 , implies that a random variable Xtakes the value x with probability $f_1(x)$, while other hypothesis H_2 , implies that the probability is $f_2(x)$, then the observation X=x is evidence supporting H_1 over H_2 if $f_1(x)>f_2(x)$, and the likelihood ratio, $f_1(x)/f_2(x)$, measures the strength of that evidence

Classification

- Binary classification problem: two classes of data $\{X_1\}=\{x_1^{(1)}, ..., x_n^{(1)}\}$ and $\{X_2\}=\{x_1^{(2)}, ..., x_n^{(2)}\}$ from two distributions $g_1(x)$ and $g_2(x)$, where $g_1(x)$ and $g_2(x)$ are true distributions. We denote $l(x, g_2; g_1) = g_2(x)/g_1(x)$ the true likelihood ratio statistic when the data x comes from the true model.
- If the loss function is symmetric and the prior probabilities $q(\theta_k)$ are equal $\{q_{\theta_1} = \ldots = q_{\theta_k}\}$, the Bayes classifier can be expressed as a *maximum likelihood test*

 $i' = \arg\max\log(f_i(x,\theta_i))$

Classification

• The decision boundary is

 $l(x,\theta_1)=l(x,\theta_2),$

where $l(x, \theta_i) = log f(x, \theta_i)$

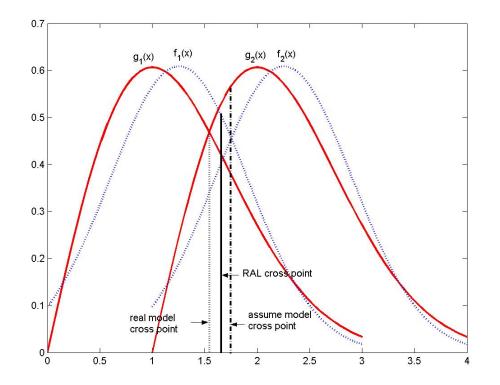
- When the model assumption is correct, The Bayes classifier is optimum, it has the minimum error rate.
- The distribution parameters, θ_i, can be learned from training data using maximum likelihood estimation (MLE). However certain estimation error will be introduced, and estimated parameters are denoted as θ_i

Model Misspecification

- When the model assumption is incorrect, the maximum likelihood test will yield inferior classification results
 - The estimated model parameters may be erroneous
 - The distribution of the likelihood ratio statistic is no longer chi-square due to the failure of Bartlett's second identity

Model Misspecification

- A model misspecification example:
 - True model: $g_1(x)$, $g_2(x)$; assumed models: $f_1(x)$, $f_2(x)$



Robust Adjustment of Likelihood

• Stafford (1996) proposed a *robust adjustment* of likelihood function in the scalar random variable case,

 $f_{\xi}(x,\theta)=f(x,\theta)^{\xi}$

• The intention is to correct the Bartlett's second identity, which equates the variance of the Fisher score

 $J(\theta) = E_g[u(\theta; X)u^T(\theta; X)]$

and the expected Fisher information matrix

$$H(\theta) = -E_g \left[\frac{\partial^2 \log(L(\theta))}{\partial \theta \partial \theta^T} \right]$$

• Analytical expressions for calculating the parameter, ξ , are only available for a very few distributions.

Robust Adjusted Likelihood Function

• We propose a general *robust adjusted likelihood* (RAL) function

 $f_a(x,\theta) = \eta f(x,\theta)^{\xi}$

• The RAL classification rule becomes

 $i' = arg max \{ log(\eta) + \xi log(f_i(X, \theta_i)) \}$

• The classification boundary is

 $b + w l(x, \theta_1) = l(x, \theta_2),$

where $b = \{log(\eta_1) - log(\eta_2)\}/\xi_2$ and $w = \xi_1/\xi_2$, this classification boundary is in a form of a linear discriminant function in likelihood space.

Robust Adjusted Likelihood Function

- The RAL introduces a data-driven linear discrimination rule $b + w l(x, \theta_1) = l(x, \theta_2)$, where w and b are learned from training data.
 - If w=1, the discrimination rule is similar to likelihood ratio tests whose evidence is controlled by the bump function if the parametric family includes $g_k(x)$.
 - If w=1 and b=0, it reduces to the Bayes classification rule in the data space
- A major advantage of the RAL is that its classification rule includes the Bayes classification rule as a special case. Therefore, similar to likelihood space classification, RAL will not perform worse than Bayes classification.

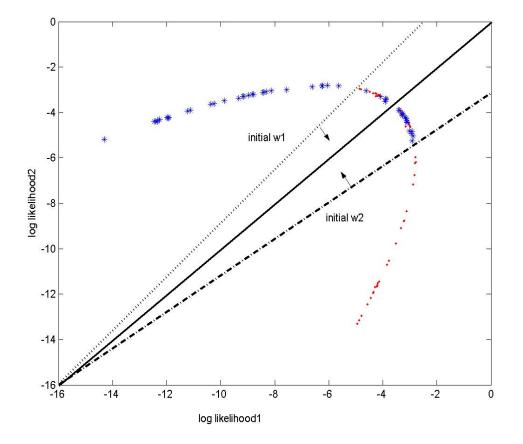
Minimum Error Rate Learning

- Likelihood space *minimum error rate learning* method to estimate (*b*,*w*):
 - For two classes of training data, X_1 and X_2 , $(b,w) = \arg\min\{P_{g_1}(l(X_1,\theta_2) - wl(X_1,\theta_1) > b)$

+ $P_{g_2}(l(X_2, \theta_1) - wl(X_2, \theta_2) < b))$

- Algorithm:
 - 1. Initialize w_1 minimizing error rate for X_1 , i.e. e_1 , and w_2 minimizing error rate for X_2 , i.e. e_2 . Assuming $w_1 > w_2$. Calculate total error rate $e=e_1+e_2$
 - 2. If $w_1 \le w_2$ or *e* is minimized, $w = (w_1 + w_2)/2$, stop
 - 3. Else, decrease w_1 and increase w_2 to calculate new error rate $e=e_1+e_2$, goto step 2

Minimum Error Rate Learning



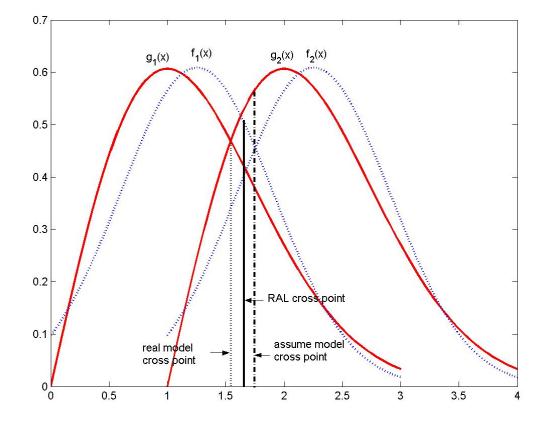
RAL Classification

- RAL classification algorithm
 - Training:
 - 1.Make model assumption
 - 2.Estimate model parameters θ based on maximum likelihood method
 - 3.Estimate RAL parameter (*b*,*w*) based on minimum error rate method
 - Testing:
 - 1.Calculate RAL of an input sample y,
 - 2.Classify this sample based on the maximum RAL rule.

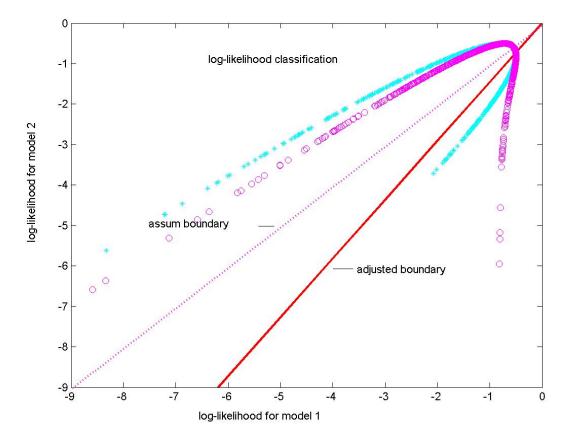
Study on Simulated Data

- Experiment:
 - 1. Two classes data are from two Rayleigh distributions with same scale and different locations. The assumed models are Gaussian distributions with same variance.
 - 2. The Bayes error rate of the true model, the Bayes error rate of the misspecified model, and the error rate of the robust adjusted likelihood classification are compared
 - 3. Repeat 100 times to get the average

Study on Simulated Data



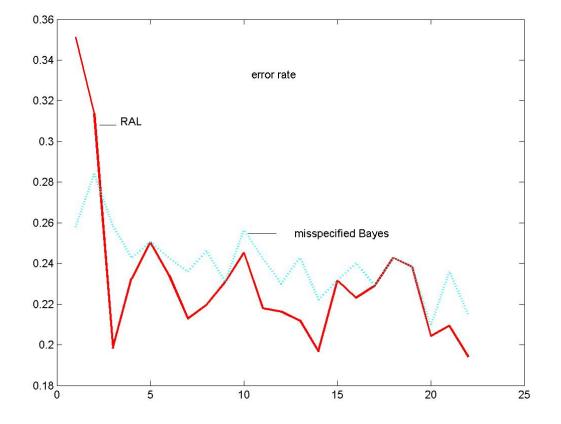
Study on Simulated Data



Application on SAR ATR

- Experiment:
 - MSTAR SAR dataset: T72, BMP2
 - Assumed models: 2 Gaussian Mixture Models (GMM) with 10 mixtures for each class.
 - Classification performance obtained for various training data sizes, with an increase of 10 samples each time.
- Observation:
 - Under a practical situation, accurate model assumption is difficult to obtain, and RAL classification has an advantage to provide certain robustness in parametric classification.

Application on SAR ATR



Conclusion

- The *RAL* classification is robust in classification when model assumption is not correct.
- Minimum error rate method is effective in estimating the raising power and scale parameters from training data
- In theory, *RAL* will not perform worse than the Bayes classifier.
- Further investigation is needed to obtain theoretical performance bound for *RAL* under various practical situations

